In Vitro Studies of Self-Splicing Group II Introns

In Vitro Studies of Self-Splicing Group II Introns

<p><strong>Order Number 8913650 </strong></p><p><strong>In vitro studies of self-splicing group II introns </strong></p><p><strong>Hebbar, Sharda Kattingeri, Ph.D. </strong></p><p>The Ohio State University, 1989 </p><p><strong>Copyright ©1989 by Hebbar, Sharda Kattingeri. Allrightsreserved. </strong></p><p><strong>U-M-I </strong></p><p>300N.ZecbRd. Ann Arbor, MI48106 </p><p><strong>IN VITRO STUDIES OF SELF-SPLICING GROUP II INTRONS </strong></p><p><strong>DISSERTATION </strong><br><strong>Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate </strong><br><strong>School of the Ohio State University </strong></p><p><strong>By </strong><br><strong>Sharda Kattingeri Hebbar, B.S., M.S. </strong></p><p><strong>* * * * * </strong></p><p><strong>The Ohio State University </strong><br><strong>1989 </strong></p><p><strong>Dissertation Committee: P. A. Fuerst </strong><br><strong>Approved by </strong><br><strong>L. F. Johnson </strong></p><p><strong>—</strong></p><p><strong>A. M. Lambowitz P. S. Perlman </strong><br><strong>* Adviser </strong><br><strong>Department of Molecular Genetics </strong><br><strong>Copyright by </strong><br><strong>Sharda Kattingeri Hebbar </strong><br><strong>1989 </strong></p><p><strong>To My Parents, and To My Husband, Raja. </strong></p><p><strong>ACKNOWLEDGEMENTS </strong></p><p><strong>I would like to thank Dr. P.S. Perlman for his assistance and guidance.&nbsp;Special thanks go to Kevin Jarrell and Rosemary Dietrich not only for their technical advice but also for their friendship.&nbsp;To my husband, Raja, I would like to express my sincere gratitude for his encouragement, support and endurance throughout my endeavors. </strong></p><p><strong>iii </strong><br><strong>VITA </strong></p><p><strong>February 21, 1980 </strong><br><strong>1960 ............. Born - Andhra Pradesh, India </strong><br><strong>................... B«S., Osnania University, </strong><br><strong>Hyderabad, India </strong></p><p><strong>1980 - 1982 </strong></p><p><strong>1983 - 1986 </strong><br><strong>................... M.S., Andhra University, </strong><br><strong>Waltair, Andhra Pradesh </strong></p><p><strong>.................... Graduate Teaching Associate, </strong><br><strong>MCDB Program, The Ohio State University, Columbus, Ohio </strong></p><p><strong>1986 - 1988 </strong></p><p><strong>................. </strong></p><p><strong>.</strong></p><p><strong>Graduate Research Associate, Department of Molecular Genetics, The Ohio Sta+e University, Columbus, Ohio </strong></p><p><strong>FIELDS OF STUDY </strong><br><strong>Major Field:&nbsp;Molecular Genetics </strong></p><p><strong>TABLE OF CONTENTS </strong></p><p><strong>INTRODUCTION ................................................. </strong></p><p><strong>1</strong><br><strong>I.A. Catalytic&nbsp;RNA I.B. Yeast&nbsp;mitochondrialDNA </strong><br><strong>I.B.l. Mosaic&nbsp;genes </strong></p><p><strong>.......................... </strong></p><p><strong>.</strong></p><p><strong>........ </strong></p><p><strong>12235</strong></p><p><strong>6</strong></p><p><strong>............................... </strong></p><p><strong>I.B.2. Maturases I.B.3. Group&nbsp;I introns </strong><br><strong>I.B.3.a. Discovery&nbsp;of RNA catalysis I.B.3.b. Tetrahymena&nbsp;rRNA intron self-splices by a two step transesterification pathway </strong><br><strong>I.B.3.C. Tetrahymena&nbsp;rRNA intron is a group I intron </strong><br><strong>79</strong><br><strong>I.B.3.d. Mitochondrial&nbsp;group I introns self-splice in vitro </strong></p><p><strong>10 </strong></p><p><strong>I.B.3.e. Not&nbsp;all group I introns are self- splicing </strong></p><p><strong>11 </strong></p><p><strong>I.B.3.f. The&nbsp;intervening sequence RNA of </strong><br><strong>Tetrahymena is an Enzyme </strong><br><strong>I.B.3.g. Active&nbsp;site model </strong><br><strong>12 13 </strong><br><strong>I.B.4. Group&nbsp;II intron splicing ...................... 14 </strong><br><strong>I.B.4.a. Conserved&nbsp;sequence elements and secondary structure ........................... 14 </strong><br><strong>I.B.4.b. Group&nbsp;II introns in yeast </strong></p><p><strong>mitochondria ................................... 16 </strong></p><p><strong>I.B.4.C. Group&nbsp;II introns encode proteins related to&nbsp;reverse transcriptase..................................,,17 </strong><br><strong>I.B.4.d. AI5g&nbsp;self-splices in vitro by a </strong></p><p><strong>novel.......................... </strong></p><p><strong>18 </strong><br><strong>I.B.4.e. Role&nbsp;of branch formation ................ 19 I.B.4.f. Group&nbsp;II intron splicing resembles nuclear pre-mRNA splicing .......... 20 </strong><br><strong>I.B.4.g. Alternative&nbsp;reaction conditions </strong></p><p><strong>....... </strong></p><p><strong>22 </strong></p><p><strong>I.B.4.h. Trans-splicing&nbsp;.......................... 23 I.B.4.i. Dependance&nbsp;on 5’ exon </strong></p><p><strong>sequences............................... </strong></p><p><strong>25 </strong><br><strong>I.B.4.j. Multiple&nbsp;5’exon binding sites .......... 26 I.B.4.k. Domain&nbsp;4 is dispensible ................. 26 I.B.4.1. Domain&nbsp;5 is required for 5’ </strong></p><p><strong>exon release....................................27 </strong></p><p><strong>I.C. Dissertation&nbsp;Goals......... </strong><br><strong>28 </strong></p><p><strong>v</strong><br><strong>29 </strong></p><p><strong>II.A. Plasmid&nbsp;constructions ............................... 29 </strong></p><p><strong>MATERIALS AND METHODS </strong></p><p><strong>II.B. Plasmid&nbsp;preparation............... 30 II.C. Transcription&nbsp;and Purification of RNA..............30 II.D. All&nbsp;Splicing reactions............ II.E. Site-directed&nbsp;mutagenesis.......... II.F. Purification&nbsp;and end-labeling of </strong><br><strong>30 31 </strong></p><p><strong>oligonucleotides ....................................... 31 </strong></p><p><strong>II.G. RNA&nbsp;sequencing..................................,....32 II.H. Northern&nbsp;Blots....................................... 32 </strong></p><ul style="display: flex;"><li style="flex:1"><strong>II.I. 3* end-labeling of RNA....................... </strong></li><li style="flex:1"><strong>32 </strong></li></ul><p><strong>II.J. Limit&nbsp;T1 digest...................................... 32 U.K. Other&nbsp;Methods........................................ 33 II.L. Enzyme reagents........ </strong><br><strong>33 </strong></p><p><strong>RESULTS........................................... </strong></p><p><strong>34 </strong><br><strong>III.A. Test&nbsp;of the generality of group II self- </strong></p><p><strong>splicing .............................. </strong></p><p><strong>34 </strong><br><strong>III.A.I. Cloning&nbsp;of intron 1 of the COX I gene </strong></p><p><strong>............................................. 35 </strong></p><p><strong>III.B. Features&nbsp;of the all self-splicing </strong></p><p><strong>reaction ................................. 36 </strong></p><p><strong>....... </strong></p><p><strong>*</strong><br><strong>III.B.1. All&nbsp;RNA is inactive in the standard aI5g splicing buffer............................... 36 </strong><br><strong>III.B.2. All&nbsp;has an absolute requirement for monovalent cations................. </strong><br><strong>III.B.3. All&nbsp;RNA has a higher threshold for </strong></p><p><strong>»........37 </strong></p><p><strong>magnesium than aI5g................................ 38 </strong><br><strong>III.B.4. NH4C1&nbsp;as the standard splicing </strong></p><p><strong>buffer.................................. </strong></p><p><strong>III.B.5. All&nbsp;reactions have a temperature optimum of 4QoC............................ </strong><br><strong>III.B.6 . The&nbsp;reaction is unimolecular and time dependent . ..... </strong><br><strong>39 40 40 </strong><br><strong>III.B.7. Optimum&nbsp;reaction conditions ................ 41 </strong><br><strong>III.C. Characterization&nbsp;of the NH4C1 reaction products&nbsp;42 </strong><br><strong>III.C.l. Identification&nbsp;of products containing the 3*exon........... </strong><br><strong>III.C.2. First&nbsp;test of the validity of the </strong></p><p><strong>assignments................... </strong></p><p><strong>43 44 </strong><br><strong>IiI.C.3. Accurate&nbsp;ligation of exons ................. 45 III.C.4. The&nbsp;slowly migrating RNA species is excised intron lariat (IVS-LAR) .................. 46 </strong><br><strong>III.C.5. Accurate&nbsp;5’ Cleavage ........................ 47 III.C.6 . Technical&nbsp;problems in mapping the </strong></p><p><strong>branch point ....................................... 48 </strong></p><p><strong>III.C.7. Summary and implications of product characterization </strong></p><p><strong>.............................48 </strong></p><p><strong>vi </strong></p><p><strong>III.D. All&nbsp;yields some novel reactionproducts in KC1 </strong><br><strong>III.D.1. Further&nbsp;analysis of KC1 effects on </strong><br><strong>49 the all reaction </strong></p><p><strong>............................. 50 </strong></p><p><strong>III.D.2. Characterization&nbsp;of novel KC1 products </strong></p><p><strong>..........................51 </strong></p><p><strong>III.D.3 A&nbsp;proposed pathway for the KC1 reaction....... </strong><br><strong>54 </strong></p><p><strong>55 55 57 58 </strong><br><strong>III.E. Spliced&nbsp;exon reopening (SER) </strong><br><strong>III.E.l. All&nbsp;does not reopen spliced exons......... III.E.2. SER&nbsp;is sequence specific................... </strong><br><strong>III.F. Much&nbsp;of the intron ORF can bedeleted </strong><br><strong>III.F.l. Location&nbsp;of the branch site in the </strong></p><ul style="display: flex;"><li style="flex:1"><strong>shortened IVS-LAR.......... </strong></li><li style="flex:1"><strong>-</strong></li></ul><p></p><p><strong>........... </strong></p><p><strong>60 62 62 </strong><br><strong>I1I.G. Studies&nbsp;using portions of all </strong><br><strong>III.G.1. Trans-splicing </strong></p><p><strong>................. </strong></p><p><strong>III.G.2. The&nbsp;conserved 5*boundary sequence is needed for trans-splicing...... </strong><br><strong>III.H. Summary </strong></p><p><strong>.</strong></p><p><strong>........... </strong></p><p><strong>.</strong></p><p><strong>64 </strong></p><p><strong>66 </strong></p><p><strong>III.I. Studies&nbsp;of aI5g self-splicing </strong><br><strong>111.1.1. Introduction........... </strong></p><ul style="display: flex;"><li style="flex:1"><strong>-</strong></li><li style="flex:1"><strong>67 </strong></li></ul><p><strong>67 </strong><br><strong>111.1.2. Domain 5 is required, in cis, for </strong></p><p><strong>the second step of splicing........................68 </strong></p><p><strong>111.1.3. Mutational&nbsp;analysis of the conserved 5* end of the intron </strong></p><p><strong>....... </strong></p><p><strong>71 </strong><br><strong>111.1.3.a. The&nbsp;first 7 nt of the intron are essential for branch formation............ 71 </strong><br><strong>111.1.3.b. 5’&nbsp;end of the intron plays a role in SER.....................................75 </strong><br><strong>111.1.4. Domain&nbsp;6 is not required for splicing in vitro.......... </strong><br><strong>76 </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>77 </strong></li><li style="flex:1"><strong>III.J. Molecular&nbsp;dissection of domain 5 </strong></li></ul><p><strong>III.J.l. Introduction................................. 77 III.J.2. Heterologous&nbsp;experiments...... III.J.3. Mutations of the highly conserved unpaired regions of domain 5 </strong><br><strong>77 </strong></p><p><strong>...... 78 </strong></p><p><strong>III.J.3.a. The&nbsp;4 base pair loop................. 78 III.J.3.b. RNA&nbsp;truncated at the Rsa I site in domain 5 is inactive.................. 80 </strong><br><strong>III.J.3.0. The&nbsp;CG bulge...........................81 </strong><br><strong>III.J.4. Bottom&nbsp;helix ................................. 83 III.J.5. 7&nbsp;nt in the 5* half of domain 5 can form a perfect match with 7nt in domain 1</strong></p><p><strong>.................................................... 85 </strong></p><p><strong>DISCUSSION </strong></p><p><strong>88 </strong></p><p><strong>IV.A. All&nbsp;self-splices in vitro </strong></p><p><strong>88 </strong></p><p><strong>IV.A.l. All&nbsp;self-splices under conditions different from those of aI5g and bll&nbsp;.............90 </strong><br><strong>IV.A.2. All&nbsp;reaction pathways ........................ 91 IV.A.3. All&nbsp;undergoes a post-splicing </strong></p><p><strong>vii </strong></p><p><strong>reaction in KC1..... </strong></p><p><strong>........................ </strong></p><p><strong>IV.A.4. All&nbsp;does not carry out apliced exon reopening </strong></p><p><strong>.</strong></p><p><strong>........ </strong></p><p><strong>.</strong></p><p><strong>....................... </strong></p><p><strong>.</strong></p><p><strong>IV.A.5. Much&nbsp;of the intron open reading </strong></p><p><strong>frame can be deleted....................... </strong></p><p><strong>IV.B. 5*&nbsp;end of the intron is not required for 5' exon release but plays a role in branch formation </strong><br><strong>IV.C.. 5*&nbsp;end of the intron plays a role in SER IV.D. Lariat&nbsp;formation is not required for efficient splicing in vitro </strong><br><strong>.. 93 </strong><br><strong>94 96 </strong></p><p><strong>96 97 </strong><br><strong>IV.E. Domain&nbsp;5 is also required for the second step in splicing </strong><br><strong>IV.E.l. 4&nbsp;base GAAA loop is not critical for </strong></p><p><strong>domain 5 function ........................... </strong></p><p><strong>IV.E.2. The&nbsp;2 base bulge is crucial for domain 5 function </strong></p><p><strong>.</strong></p><p><strong>........................... </strong></p><p><strong>100 </strong><br><strong>IV.F. Future&nbsp;experiments </strong><br><strong>IV.F.l. Point&nbsp;of interaction..................... IV.F.2. Transformation&nbsp;experiments </strong></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    266 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us