Ubiquitous Computing Motes and Smart Dust Sensor Networks

Ubiquitous Computing Motes and Smart Dust Sensor Networks

Fachbereich Informatik und Elektrotechnik Ubicomp Ubiquitous Computing Motes and Smart Dust Sensor Networks Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust Smart Dust Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust The goal of the Smart Dust project is to build a self-contained, millimeter- scale sensing and communication platform for a massively distributed sensor network. This device will be around the size of a grain of sand and will contain sensors, computational ability, bi-directional wireless communications, and a power supply, while being inexpensive enough to deploy by the hundreds. The science and engineering goal of the project is to build a complete, complex system in a tiny volume using state-of-the art technologies (as opposed to futuristic technologies), which will require evolutionary and revolutionary advances in integration, miniaturization, and energy management. Applications for this technology: • Weather/seismological monitoring on Mars • Internal spacecraft monitoring • Land/space comm. networks • Chemical/biological sensors • Weapons stockpile monitoring • Defense-related sensor networks • Inventory Control • Product quality monitoring • Smart office spaces • Sports - sailing, balls Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust SMART DUST Autonomous sensing and communication in a cubic millimeter Supported by the DARPA/MTO MEMS program http://robotics.eecs.berkeley.edu/~pister/SmartDust/ Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust SMART DUST "The invincible" by Stanislaw Lem (1964) Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust SMART DUST Kristofer S. J. Pister Berkeley Sensor & Actuator Center (BSAC) University of California, Berkeley Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust Ref.: http://www.dust-inc.com Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust "The two figures above represent where we are and where we'd like to be. On the left is where we hope to be in July of '01 - a cubic millimeter device with a sensor, power supply, analog circuitry, bidirectional optical communication, and a programmable microprocessor. On the right is where we are now (July '99) - a (currently) non-functional mote with a volume of about 100 cubic millimeters. There are two silicon chips sitting on a type-5 hearing aid battery. The right chip is a MEMS corner cube optical transmitter array - it works. On the right is a CMOS ASIC with an optical receiver, charge pump, and simple digital controller - it doesn't work (we violated some of the design rules in the 0.25 micron process, but the next one should work)." http://robotics.eecs.berkeley.edu/~pister/SmartDust/ Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust Properties of Smart Dust: Ø Remain Suspended in air Ø Buoyed by air currents Ø Can sense and communicate for many hours/days Integrated into Smart Dust Motes: Ø MEMS sensors Ø Signal processing and control circuitry Ø Power source and solar cells Ø Laser diode and MEMS mirror for active optical communication Ø Retroreflector and optical receiver for passive optical communication http://robotics.eecs.berkeley.edu/~pister/SmartDust/ Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust Components: • MEMS sensors • Signal processing and control circuitry • Power source and solar cells • Laser diode and MEMS mirror for active optical communication • Retroreflector and optical receiver for passive communication Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust Ref.: http://www-bsac.eecs.berkeley.edu/archive/users/warneke-brett/SmartDust/index.html Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust Diagram of a CMOS ASIC circuit. Optical input from the base station is used as the system clock to generate pseudorandom data. Ref.: PRELIMINARY CIRCUITS FOR SMART DUST Bryan Atwood, Brett Warneke, and Kristofer S. J. Pister Berkeley Sensor and Actuator Center, Dept. Of Electrical Engineering and Computer Sciences University of California, Berkeley Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik CCR Interogator Top View of the Interrogator Quarter-wave Filter Polarizing Plate Beamsplitter CCD Camera Lens 0.25% reflectance on each surface Frequency-Doubled Beam YAG Green Laser Expander 45o mirror Ref.: http://robotics.eecs.berkeley.edu/~pister/SmartDust/ Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik CCR Interogator Demonstration of MEMS optical communication. Laser light illuminates a number of macro-motes with MEMS corner cubes on-board. The laser enables communication from the base-station to the motes, and the motes communicate back to the base station by modulating their reflectivity using the MEMS corner cube. This particular system has transmitted temperature sensor data in the laboratory. Similar corner cubes have been used before to communicate over 150m distance, and up to 1km should be possible. Ref.: http://robotics.eecs.berkeley.edu/~pister/SmartDust/ Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust Microfabricated corner-cube retroreflector, consisting of three gold-coated polysilicon mirrors. The base mirror can be deflected electrostatically, modulating the optical signal reflected from the device. P. B. Chu et al., "Optical communication using micro corner cube reflectors," Proc. EEE MEMS Workshop, Nagoya, Japan, Jan. 1997, pp. 350–355. Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust First MicroMote Attempt: The photo shows the three components of the initial, nonfunctional attempt: a MUMPS chip containing four corner cube reflectors, shown on the right, for communication; a CMOS ASIC (left) for control; and a hearing aid battery for power. The total volume of the mote is under 100 mm3. Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart-Dust Nodes Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Mote Solar powered mote with bi- directional communications and sensing (acceleration and ambient light) -- same CMOS ASIC as Golem Dust with with a custom process to integrate solar cells, CCR, accelerometer, and high voltage FETs 6.6 mm3 total circumscribed volume Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Golem Dust Golem Dust solar powered mote with bi-directional communications and sensing (acceleration and ambient light) 11.7 mm3 total circumscribed volume ~4.8 mm3 total displaced volume Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Golem Dust Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Daft Dust Daft Dust 63 mm3 bi-directional communication mote Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Daft Dust Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Flashy Dust Flashy Dust 138 mm3 uni-directional communication and sensing (ambient light) mote Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Daft Dust This mote has four CCRs facing towards each quadrant for better hemispherical coverage Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust http://www.nanotech-now.com/smartdust.htm Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust Conclusion: Smart dust relies on the convergence of three key technologies: • Digital circuitry • Laser-driven wireless communications • MEMS (Micro ElectroMechanical Systems) Kris Pister: "In 2010 MEMS sensors will be everywhere, and sensing virtually everything. Scavenging power from sunlight, vibration, thermal gradients, and background RF, sensors motes will be immortal, completely self contained, single chip computers with sensing, communication, and power supply built in. Entirely solid state, and with no natural decay processes, they may well survive the human race." Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Cots Dust Reality: Commercial Off-The-Shelf Components Dust Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Cots Dust Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Smart Dust "Smart dust" particles Smart dust is the name researchers have given to the idea of having handfuls of tiny, cheap sensors called motes that can be scattered around to measure all manner of things in the environment, from chemicals in the soil to scents in the air. So far, the motes that are the size of dust particles aren't that smart, and the smart ones are far bigger than dust, as Michael Sailor puts it. But Sailor, a chemist at the University of California, San Diego, and many other researchers are working on making the smallest motes smarter. Sailor's group develops sensors less than a hair's breadth across. But each small device can do only one simple job: detect a certain chemical. Video http://chem-faculty.ucsd.edu/sailor/research/highlights.html Ubiquitous Computing, Helmut Dispert Fachbereich Informatik und Elektrotechnik Dust Networks

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    35 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us