
<p><strong>Carbon capture and storage: Setting the New Zealand scene </strong></p><p><strong>Brad Field GNS Science Lower Hutt </strong></p><p><a href="mailto:[email protected]" target="_blank"><strong>[email protected] </strong></a></p><p><strong>GNS Science </strong></p><p><strong>The mitigation wedges required to meet 2050 emission target </strong><br><strong>(if only 2</strong><sup style="top: -0.4997em;"><strong>o </strong></sup><strong>in 2100) </strong></p><p>60 </p><p><strong>CCS </strong></p><p>50 40 30 20 10 <br>0</p><ul style="display: flex;"><li style="flex:1">2009 </li><li style="flex:1">2015 </li><li style="flex:1">2020 </li><li style="flex:1">2025 </li><li style="flex:1">2030 </li><li style="flex:1">2035 </li><li style="flex:1">2040 </li><li style="flex:1">2045 </li><li style="flex:1">2050 </li></ul><p>CCS 14% (17%) </p><p>Power generation efficiency and fuel switching 3% (1%) End-use fuel switching 12% (12%) </p><p>Renewables 21% (23%) </p><p>Nuclear 8% (8%) <br>End-use energy efficiency 42% (39%) </p><p>Percentages represent share of cumulative emissions reductions to 2050. Percentages in brackets represent share of emissions reductions in the year 2050. </p><p>IEA 2012, GCCSI 2012 </p><p><strong>GNS Science </strong></p><p><strong>Deep purple… </strong></p><p><a href="/goto?url=http://www.smh.com.au/environment/weather/temperatures-off-the-charts-as-australia-turns-deep-purple-20130108-2ce33.html" target="_blank"><strong>http://www.smh.com.au/environment/weather/temperatures-off-the-charts-as-australia-turns-deep-purple-20130108-2ce33.html </strong></a></p><p><strong>GNS Science </strong></p><p><strong>The carbon capture, transport and storage process </strong></p><p>Below ~800 m = liquid </p><p>CO2CRC </p><p><strong>GNS Science </strong></p><p><strong>Geological storage of CO</strong><sub style="top: 0.62em;"><strong>2 </strong></sub></p><p><strong>claystone seal rock </strong></p><p><strong>sandstone reservoir rock </strong></p><p>seal reservoir seal injected CO<sub style="top: 0.245em;">2 </sub></p><p>CO2CRC </p><p><strong>CO</strong><sub style="top: 0.41em;"><strong>2 </strong></sub><strong>storage sites: </strong></p><p>natural gas reservoir </p><p>• Several kilometres below surface • Similar locations to oil and natural gas </p><p><strong>GNS Science </strong></p><p><strong>Typical depth ranges for subsurface resources </strong></p><p>Interactions could include leakage/migration, and pressure effects </p><p>IEAGHG Technical Report 2013-08 </p><p><strong>GNS Science </strong></p><p><strong>Global scene </strong></p><p>• 16 large CCS projects currently operating or in construction, with a total capture ~ 36 Mtpa of CO<sub style="top: 0.37em;">2 </sub></p><p>• 59 large projects being planned: >110 Mtpa </p><p><strong>Government support for CCS: </strong></p><p>• UKP 1,000 M government funding • USD 3,400 M government funding • AUD 1,680 M Flagship Project funding </p><p>Big effort internationally – a lot at stake! Big industry – opportunities </p><p>Global CCS Institute 2012, The Global Status of CCS: 2012, Canberra, Australia </p><p>NZ = capture at Kapuni (no storage) </p><p><strong>GNS Science </strong></p><p><strong>Sleipner Field CO</strong><sub style="top: 0.62em;"><strong>2 </strong></sub><strong>Storage, Norway </strong></p><p><a href="/goto?url=http://www.statoilhydro.com" target="_blank">www.statoilhydro.com </a><br>Capture: Amine process </p><p>Sleipner A <br>Sleipner T </p><p>0500 m</p><p>CO<sub style="top: 0.105em;">2 </sub>Injection Well </p><p>1000 m</p><p>CO<sub style="top: 0.095em;">2 </sub><br>Utsira </p><p>Formation </p><p>1500 m</p><p>Sleipner Øst Production and Injection Wells </p><p>2000 m</p><p>Tore Torp, StatoilHydro, Norway </p><p>0<br>500 </p><p>m<br>1000 m<br>1500 m<br>2500 m</p><p>9% CO<sub style="top: 0.2046em;">2 </sub></p><p>Heimdal Formation </p><p>Started injecting in 1996. ~ 1 Mtpa. 16 Mt so far; 21-30 Mt planned. The extra equipment cost for the CO<sub style="top: 0.245em;">2 </sub>compression and the drilling of the CO<sub style="top: 0.245em;">2 </sub>injection well was roughly 100 million USD. </p><p><strong>GNS Science </strong></p><p><strong>Enhanced Oil Recovery (EOR) - Weyburn </strong></p><p>• International trading of CO<sub style="top: 0.285em;">2 </sub>• CCUS (“Utilisation”) </p><p><strong>Source: </strong>ARI and Melzer Consulting (2010). </p><p><strong>Enhanced oil recovery, and CO</strong><sub style="top: 0.37em;"><strong>2 </strong></sub><strong>storage </strong></p><p>Weyburn oilfield in Canada, was discovered in 1954. In October 2000, EnCana began injecting carbon dioxide to boost oil production. Overall, some 20 Mt of carbon dioxide will be permanently sequestered at ~1500 m over the lifespan of the project. The gas is being supplied via a 205 mile long pipeline (costing 100 million US$) from the lignite-fired Dakota Gasification Company synfuels plant site in North Dakota. </p><p>IEA Greenhouse Gas R&D Programme </p><p><strong>GNS Science </strong></p><p><strong>Gorgon – world’s largest storage project, 2015 </strong></p><p><strong>Description </strong>– Construction of 10 million </p><p>tonnes per year LNG plant. CO<sub style="top: 0.4107em;">2 </sub>to be captured from natural gas and injected into the Dupuy Formation <strong>Capture </strong>– CO<sub style="top: 0.4122em;">2 </sub>separation (part of gas </p><p><em>Image courtesy of Chevron </em></p><p>separation for LNG) </p><p>• <em>Capture to commence </em>– 2015 (est) </p><p><strong>Storage </strong>– Onshore – beneath Barrow Island at a depth of approx 2000m </p><p>• <em>Storage commence </em>– 2015 (est) • <em>Storage rate – </em>3 to 4 million tpa </p><p><strong>Partners </strong>– Chevron, Exxon-Mobil, Shell </p><p>Petroleum in Western Australia September 2009, Dept of Mines and Petroleum. </p><p><strong>GNS Science </strong></p><p><strong>NZ emissions from large point sources total 5-8 Mtpa </strong></p><p><strong>(small on a global scale) </strong></p><p>Glenbrook <br>~1-2 Mt /yr </p><p>K Thompson </p><p>Huntly <br>≤4-5 Mt /yr </p><p>Kapuni <br>≤0.8 Mt /yr </p><p><a href="/goto?url=http://www.teara.govt.nz" target="_blank">www.teara.govt.nz </a></p><p>Comalco <br>≤ 0.5 Mt /yr </p><p>vector.co.nz </p><p>rhsconsulting.co.nz </p><p><strong>GNS Science </strong></p><p><strong>Storage opportunities </strong></p><p><strong>Onshore capacity ~ 15,000 Mt </strong></p><p><strong>Likely that we have more than enough! </strong></p><p><strong>CO</strong><sub style="top: 0.2697em;"><strong>2 </strong></sub><br><strong>Storage </strong><br><strong>(Total) </strong><br><strong>Mt </strong><br><strong>Field </strong></p><p><strong>Maui Field </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Kapuni </strong></li><li style="flex:1"><strong>106 </strong></li></ul><p><strong>23 </strong><br><strong>5</strong></p><p><strong>~200-300 Mt </strong></p><p><strong>McKee Rimu Mangahewa Waihapa/Ngaere Ngatoro </strong><br><strong>843</strong></p><ul style="display: flex;"><li style="flex:1"><strong>Kaimiro </strong></li><li style="flex:1"><strong>2</strong></li></ul><p></p><p>King, P., Bland, K., Funnell, R., Archer, R., and Lever, L. 2009. Opportunities for underground geological storage of CO<sub style="top: 0.245em;">2 </sub>in New </p><p>Zealand - Report CCS-08/5 - <strong>Onshore Taranaki Basin overview</strong>. </p><p>GNS Science Report 2009/58. </p><p>Point source Storage polygon </p><p><strong>GNS Science </strong></p><p><strong>Potential leakage mechanisms and impacts of CO</strong><sub style="top: 0.495em;"><strong>2 </strong></sub><strong>storage on groundwater </strong></p><p>IEAGHG Technical Report 2013-08 from Figure 3 of IEAGHG 2011/11. Not to scale. </p><p><strong>GNS Science </strong></p><p>Test venting of CO<sub style="top: 0.205em;">2</sub>, Otway project, Australia – a deliberate “leak” </p><p><strong>Many risks, but… </strong></p><p>Photo: Sandeep Sharma, CO2CRC </p><p>• <strong>CO</strong><sub style="top: 0.495em;"><strong>2 </strong></sub><strong>storage done for 15</strong><sup style="top: -0.6em;"><strong>+ </strong></sup><strong>years (EOR for longer) </strong></p><p>• <strong>Risks are recognised (often site-specific) </strong></p><p>• <strong>They can be assessed by site studies (cost:benefit) </strong>• <strong>Phases of assessing risk – progression of methods </strong>• <strong>Peer reviews of risk – iterative? (Gorgon) </strong>• <strong>Risk is closely linked to potential for litigation, fines </strong></p><p><strong>GNS Science </strong></p><p><strong>General concepts </strong></p><p>• <strong>Geological site assessments – site-specific </strong></p><p>• <strong>Monitoring and verification - reduce risk, provide proof </strong></p><p>• <strong>What constitutes “leakage”? </strong>• <strong>Phases </strong></p><p>– Block delineation/prioritising – Permitting (overlaps?) – Planning and approval – Operation – Post-injection – Handover </p><p>• <strong>Context – changing perceptions, demographics, politics </strong></p><p><strong>GNS Science </strong></p><p><strong>What’s special about New Zealand? </strong></p><p>1. Local variations in geology 2. Active faults, active seismicity 3. General societal perspectives – climate? NIMBY? 4. Maori perspectives 5. Small population & economy 6. Currently smug (“green”), with adequate electricity supply (?) </p><p>7. No regulations specifically on CCS (yet) <em>assurance (3-way); flexibility (geology!) </em></p><p>8. CO<sub style="top: 0.37em;">2 </sub>not used for enhanced oil recovery (yet) 9. Axial ranges; Cook Strait (<em>pipelines or ships?) </em>10. Uncertain where new large point sources might be. </p><p><strong>GNS Science </strong></p><p><strong>Potential issues include…. </strong></p><p>• <strong>Regulations </strong></p><p>– New legislative requirements – Onus on regulators to predict potential resource interactions? <br>(priority of use, avoidance of conflict?) </p><p>– Would regions be asked to accept a share of long-term liability, post-injection, or just central government? </p><p>• <strong>CCS infrastructure </strong></p><p>– When will fields become depleted/available and which ones might be suitable for storage of CO<sub style="top: 0.4103em;">2 </sub>– ownership? good condition? </p><p>• <strong>Acceptance </strong></p><p>‒ What benefits might there be for regions? ‒ Engagement with communities </p><p><strong>GNS Science </strong></p><p><strong>Summary </strong></p><p>• Globally, CCS is needed if we are to meet emission targets • Currently, NZ emissions are small – may change • New Zealand has “enough” storage capacity • Uncertain where/when CCS will be implemented in NZ • At least 10 special features for New Zealand • Regulators may need to prioritise pore space use • Regulations should enable project planning, help avoid litigation and reassure communities </p><p><strong>GNS Science </strong></p><p>Thank you </p><p><strong>GNS Science </strong></p><p><strong>Useful publications include: </strong></p><p><a href="/goto?url=http://www.publish.csiro.au/pid/6467.htm" target="_blank">http://www.publish.csiro.au/pid/6467.htm </a></p><p><a href="/goto?url=http://www.ieaghg.org/" target="_blank">http://www.ieaghg.org/ </a></p><p>Paperback - February 2012 ISBN: 9780643094857 - AU $ 39.95 </p><p>Technical Report 2013-08 </p><p>An eBook version is available from </p><p>eBooks.com </p><p><strong>GNS Science </strong></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages20 Page
-
File Size-