Clemson University TigerPrints All Theses Theses 8-2012 LOAD CARRYING CAPACITY ASSESSMENT OF A MASONRY DOME Tun Li Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Civil Engineering Commons Recommended Citation Li, Tun, "LOAD CARRYING CAPACITY ASSESSMENT OF A MASONRY DOME" (2012). All Theses. 1449. https://tigerprints.clemson.edu/all_theses/1449 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. LOAD CARRYING CAPACITY ASSESSMENT OF A MASONRY DOME A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Civil Engineering by Tun Li August 2012 Accepted by: Dr. Sezer Atamturktur, Committee Chair Dr. Hsein Juang Dr. Nadarajah Ravichandran i ABSTRACT This thesis first establishes a semi-empirical relationship to estimate the reduction in load carrying capacity of a masonry dome due to damage by exploiting deviations in the fundamental natural frequency. A macro finite element model of the dome is developed and calibrated using both non-destructive vibration measurements and destructive load-displacement measurements up to failure. The macro-model is then executed to simulate incremental development of cracks. The first natural frequency and remaining load carrying capacity of the dome are monitored to define a semi-empirical relationship, which is ultimately generalized for spherical domes with varying span-to- height ratios. Subsequently, in order to numerically determine the load carrying capacity of a masonry dome, this thesis further investigates three established techniques of FE modeling for the masonry dome: detailed micro-modeling, simplified micro-modeling, and macro-modeling. Linear properties of these three alternative models are first calibrated with the modal parameters identified through dynamic modal testing conducted on the scaled dome specimen in the laboratory. Then, the fidelity and robustness of these three different modeling approaches are evaluated by comparing the model predictions against static load-to-failure test data obtained in the laboratory. ii DEDICATION I would like to dedicate this thesis to my parents Jinbao Li and Baisheng Liu. iii ACKNOWLEDGMENTS First and foremost, I wish to express my sincere gratitude to Dr. Sezer Atamturktur, for her continued inspiration and instruction on my way to fulfill my master’s degree. And I want to thank my committee members, Dr. Hsein Juang and Dr. Nadarajah Ravichandran, for their advice and encouragement. I am grateful to Michael Ramge for sharing valuable experimental data, Jack Germaine and Steve Rudolph for helping with the physical testing. And I also would like to acknowledge Ismail Farajpour, Kendra Buren and Joshua Hegenderfer for collaborating the necessary codes in this thesis. Many appreciations go to Karma Yonten and Godfrey Kimball for their editorial help. I also would like to thank the PTT Grants program of the National Center for Preservation Technology and Training (NCPTT) of the Department of Interior, for providing the funds that made this work possible. iv TABLE OF CONTENTS Page TITLE PAGE .................................................................................................................... i ABSTRACT ..................................................................................................................... ii DEDICATION ................................................................................................................ iii ACKNOWLEDGMENTS .............................................................................................. iv LIST OF TABLES ......................................................................................................... vii LIST OF FIGURES ...................................................................................................... viii CHAPTER I. INTRODUCTION ......................................................................................... 1 Motivation and Background .................................................................... 1 Main Contributions and Objectives ......................................................... 2 Main Findings of the Thesis .................................................................... 3 II. LOAD CARRYING CAPACITY ASSESSMENT OF A SCALED MASONRY DOME: SIMULATIONS VALIDATED WITH NON-DESTRUCTIVE AND DESTRUCTIVE MEASUREMENTS ................................................................................. 5 Introduction .............................................................................................. 5 Scaled Dome Model ................................................................................. 8 Finite Element Model Development ........................................................ 9 Test-Analysis Correlation with Non-Destructive Test: Linear Material Properties Calibration ............................................ 16 Test-Analysis Correlation with Destructive Test: Nonlinear Material Properties Calibration ....................................... 24 Simulation of Damage via Experimentally Informed FE Models ......... 26 Conclusions ............................................................................................ 35 III. FIDELITY AND ROBUSTNESS OF DETAILED MICRO-, SIMPLIFIED MICRO- AND MACRO-MODELING TECHNIQUES FOR A MASONRY DOME ........................................ 39 v Table of Contents (Continued) Page Introduction ............................................................................................ 39 FE Modeling Strategies for Masonry Construction ............................... 42 Scaled Dome Model ............................................................................... 44 Finite Element Model Development of the Scaled Masonry Dome ...... 45 Experimental Investigations................................................................... 51 Evaluation of Model Fidelity ................................................................. 56 Evaluation of Model Robustness ........................................................... 62 Conclusions ............................................................................................ 64 IV. CONCLUSIONS.......................................................................................... 68 REFERENCES .............................................................................................................. 70 vi LIST OF TABLES Table Page 2.1 Geometric properties of the dome.................................................................. 9 2.2 FE model input parameters before and after calibration .............................. 16 2.3 Variables of the digital signal-processing .................................................... 19 2.4 Comparison of the predicted and measured natural frequencies and corresponding mode shapes ............................................................ 23 2.5 Modal analysis solutions .............................................................................. 30 2.6 Comparison of the simulated mechanical behavior of the dome ................. 32 3.1 Material properties of the masonry components for the detailed micro-model ............................................................................. 46 3.2 Parameters for the contact pair .................................................................... 47 3.3 Material and geometric parameters for the homogenization process .......... 49 3.4 Material properties of the expended unit in the simplified micro-model .... 50 3.5 Material parameters for the macro-model.................................................... 51 3.6 Parameters of the data acquisition and digital signal processing ................. 53 3.7 Calibration of the Young’s modulus ............................................................ 56 3.8 Comparison between the experiment and FE simulation ............................ 60 3.9 Variations of each case ................................................................................ 62 3.10 Coefficient of variation ................................................................................ 64 vii LIST OF FIGURES Figure Page 2.1 The scaled dome constructed with AAC tile and fast-setting gypsum cement...................................................................... 9 2.2 FE model of the dome .................................................................................. 11 2.3 Asymptotic convergence of the six natural frequencies as mesh is refined ................................................................................... 12 2.4 Simplified stress-strain curve for concrete in ANSYS ................................ 14 2.5 (Left) Excitation points, (Right) Measurement points ................................. 18 2.6 Typical response history measurements: (Left) hammer impact, (Right) vibration response ................................ 19 2.7 Reciprocity check between Points 6 and 10 ................................................ 20 2.8 Linearity check: (Top) the driving point FRF for the crown of the dome, (Bottom) the corresponding coherence function.................................... 21 2.9 Experimental setup for the destructive testing ............................................. 25 2.10 Test and simulation correlation ...................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages90 Page
-
File Size-