Transient Air Dynamics Modeling for an Advanced Alternative Fueled Engine

Transient Air Dynamics Modeling for an Advanced Alternative Fueled Engine

Transient Air Dynamics Modeling for an Advanced Alternative Fueled Engine Undergraduate Honors Thesis Presented in Partial Fulfillment of the Requirements for Graduation with Distinction at The Ohio State University By Ryan V. Everett * * * * * The Ohio State University 2010 Defense Committee: Professor Giorgio Rizzoni, Advisor Dr. Shawn Midlam-Mohler Copyrighted by Ryan V. Everett 2010 ii ABSTRACT The EcoCAR challenge is a three year competition with a goal of re-engineering a 2009 General Motors crossover utility vehicle to improve vehicle emissions and fuel economy, while maintaining drivability and consumer acceptability. Ohio State’s team has selected a plug-in hybrid electric vehicle (PHEV) architecture with a 1.8 L CNG Honda engine as the auxiliary power unit. The Honda engine is converted to run on E85 fuel, which requires the engine control software to be rewritten. The purpose of this research is to write a feed forward air/fuel ratio (AFR) control algorithm to better manage fuel injection during transient engine events. AFR control has a major impact on engine fuel economy and tail pipe emissions. This research investigates the accuracy of using a dynamic intake manifold filling and emptying model coupled with a linear approximation of the Taylor Series expansion to predict air flow forward in time. To better estimate air flowing passed the throttle plate and into the intake manifold, a quasi-static effective area map of the throttle was created. The control algorithm uses the throttle effective area map to improve the accuracy of air flow estimation into the intake manifold because the MAF sensor is not a reliable flow meter during transient engine events. It also uses a feed forward volumetric efficiency map to predict mass air flow exiting the intake manifold. It was found that by using feed forward control software and empirical engine maps to predict manifold air pressure forward in time, a better estimate of mass air flow entering the cylinder was achieved. The creation of this software allows the EcoCAR vehicle to better maintain a stoichiometric AFR during transients, which reduces tail pipe emissions species, including NOx, CO, and unburned Hydrocarbons. ii ACKNOWLEDGMENTS I would like to thank my advisor Professor Giorgio Rizzoni for allowing me the opportunity to complete an undergraduate honors research project. I would especially like to thank Dr. Shawn Midlam-Mohler for all of his guidance through the project. I would also like to thank the Center for Automotive Research for allowing me to use the testing facility and equipment to obtain experimental data. I would like to thank the National Science Foundation for their financial support, under the grant CMMI0928518, “A System Dynamics Modeling Methodology to Predict Transient Phenomena in Compressible Fluid Flow Systems.” iii TABLE OF CONTENTS Page ABSTRACT ................................................................................................................. ii ACKNOWLEDGMENTS ........................................................................................... iii TABLE OF CONTENTS ............................................................................................ iv LIST OF FIGURES ..................................................................................................... vi LIST OF TABLES ...................................................................................................... xii Chapter 1: Introduction ....................................................................................................... 1 1.1. Introduction............................................................................................................ 1 1.2. Project Objective ................................................................................................... 2 1.3. Literature Review .................................................................................................. 3 1.3.1 Throttling Characteristics ................................................................................... 5 1.3.2 Volumetric Efficiency ........................................................................................ 8 1.3.3 Intake Manifold Air Flow Characteristics ....................................................... 13 1.3.4 AFR Control ..................................................................................................... 17 1.3.5 Tailpipe Emissions ........................................................................................... 20 1.3.6 Summary .......................................................................................................... 23 Chapter 2: Experimental Description................................................................................ 24 2.1. Engine Instrumentation ........................................................................................ 24 2.2. Data Acquisition System and Software ............................................................... 28 2.3. LE5 MVEM ......................................................................................................... 29 Chapter 3: Intake Manifold modeling ............................................................................... 31 3.1. Introduction.......................................................................................................... 31 3.2. Throttle Flow Restriction Model ......................................................................... 32 3.3. Throttle Model Software Validation .................................................................... 35 3.4. Filling and Emptying Model ................................................................................ 40 3.5. Summary .............................................................................................................. 46 Chapter 4: Control Algorithm Description And Software Validation .............................. 47 4.1. Introduction.......................................................................................................... 47 4.2. Control Algorithm Development ......................................................................... 47 4.3. Control Algorithm Calibration and Software Validation .................................... 51 4.4. Summary .............................................................................................................. 60 Chapter 5: Hardware Validation ....................................................................................... 61 iv 5.1. Introduction.......................................................................................................... 61 5.2. Base Algorithm .................................................................................................... 61 5.3. Base Algorithm with Adaptive Parameters ......................................................... 65 5.4. Recalibrated Base Algorithm ............................................................................... 69 5.5. Conclusion ........................................................................................................... 77 Chapter 6: Future Work and Conclusion .......................................................................... 79 Chapter 7: Bibliography .................................................................................................... 81 Chapter 8: Appendix ......................................................................................................... 82 Appendix A: Filling and Emptying Model Derivation ............................................... 83 Appendix B: Simulink engine control map ................................................................ 85 v LIST OF FIGURES Figure Page Figure 1: Cross-section view of intake manifold (Heywood) ............................................. 5 Figure 2: Air flow rate as a function of intake manifold pressure and engine speed (Heywood) .................................................................................................................. 6 Figure 3: Variable length intake runner system (Watanabe, Nakajima and Goto) ........... 10 Figure 4: Lift profiles for high-output and delayed closure cam settings (Watanabe, Nakajima and Goto) .................................................................................................. 11 Figure 5: Volumetric efficiency vs. load and engine speed contour plot (Davis) ............ 12 Figure 6: Volumetric efficiency vs. load and engine speed surface plot (Davis) ............. 13 Figure 7: Fluid dynamic models of the intake manifold (Rizzoni, Fiorentini and Canova, Engine Dynamics Introduction) ................................................................................ 15 Figure 8: Control diagram for fuel system ........................................................................ 18 Figure 9: Flow path of air/fuel charge and AFR control delays (Chevalier, Vigild and Hendricks) ................................................................................................................. 19 Figure 10: Engine out emissions for 2.4 L gasoline engine .............................................. 21 vi Figure 11: Catalyst conversion efficiency for NO, CO, and HC emissions for a three-way catalyst as a function of air/fuel ratio for gasoline (Heywood) ................................ 22 Figure 12: Location of crank encoder ............................................................................... 26 Figure 13: Location of MAP sensor, MAF sensor, IAT sensor, and TPS .......................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    109 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us