LATEX font guide Carleton College LATEX workshop LATEX interacts with fonts differently than most software you are accustomed to. It does not natively support using system fonts; you can’t just choose Comic Sans from a drop-down menu and use it in your document. (This is probably for the best.) Nevertheless, LATEX does support a variety of fonts. This document will showcase a few that are of high quality and have excellent math support. Using a font in your document To use one of these fonts in a document using one of the Carleton templates, go to the preamble and look for these lines: % The Latin Modern font is a modernized replacement for the classic % Computer Modern. Feel free to replace this with a different font package. \usepackage{lmodern} To switch to a different font package, just replace lmodern with the name of that package. (It is very important not to load multiple font packages; they can conflict and cause strange behavior.) For example, to us the kpfonts package, you should replace the third line of the above with the following: \usepackage{kpfonts} 1 Latin Modern This is the Latin Modern font. To use it, include this line in your preamble: \usepackage{lmodern} Example text Theorem (Pólya enumeration theorem, unweighted). Let Γ be a group of per- mutations of a finite set X of “objects” and let Y be a finite set of “colors”. Then the number of orbits under Γ of Y -colorings of X is given by 1 Y X / Γ = tc(γ) Γ γ Γ | | X∈ where t = Y and where c(γ) is the number of cycles of γ as a permutation of | | X. Theorem (Green’s theorem, two dimensions). Let C be a positively-oriented, piecewise-smooth, simple closed curve in the plane. Let D be the region bounded by C. If L and M are functions defined on an open region containing D and have continuous partial derivatives, then ∂M ∂M (L dx + M dy) = dx dy. ∂x − ∂y IC ZZD ABΓ∆EZHΘIKΛMNΞOΠP ΣTY ΦXΨΩ αβγδζηθικλµνξoπρστυφχψω Math numerals: 1234567890 Text numerals: 1 2 3 4 5 6 7 8 9 0 1 Set notation: x Ξ f(x) F − (ζ) ∈ ⊆ A string that works poorly in bad math fonts: QJqygf Bitstream Charter This is the Bitstream Charter font. To use it, include this line in your preamble: \usepackage[charter]{mathdesign} Example text Theorem (Pólya enumeration theorem, unweighted). Let Γ be a group of permuta- tions of a finite set X of “objects” and let Y be a finite set of “colors”. Then the number of orbits under Γ of Y -colorings of X is given by X 1 c γ Y / Γ = t ( ) Γ γ Γ | | X∈ where t = Y and where c(γ) is the number of cycles of γ as a permutation of X . | | Theorem (Green’s theorem, two dimensions). Let C be a positively-oriented, piecewise- smooth, simple closed curve in the plane. Let D be the region bounded by C. If L and M are functions defined on an open region containing D and have continuous partial derivatives, then ∂ M ∂ M (L d x + M d y) = d x d y. C D ∂ x − ∂ y I ZZ ABΓ ∆EZHΘIKΛMNΞOΠPΣTY ΦX ΨΩ αβγδεζηθικλµνξoπρστυφχψω Math numerals: 1234567890 Text numerals: 1 2 3 4 5 6 7 8 9 0 1 Set notation: x Ξ f (x) F − (ζ) A string that works∈ poorly in⊆ bad math fonts: QJq y g f URW Garamond This is the URW Garamond font. To use it, include this line in your preamble: \usepackage[garamond]{mathdesign} Example text Theorem (Pólya enumeration theorem, unweighted). Let Γ be a group of permutations of a finite set X of “objects” and let Y be a finite set of “colors”. Then the number of orbits under Γ of Y -colorings of X is given by X 1 c γ Y /Γ = t ( ) Γ γ Γ | | ∈ X where t = Y and where c(γ) is the number of cycles of γ as a permutation of X . | | Theorem (Green’s theorem, two dimensions). Let C be a positively-oriented, piecewise- smooth, simple closed curve in the plane. Let D be the region bounded by C . If L and M are functions defined on an open region containing D and have continuous partial derivatives, then ∂ M ∂ M (L d x + M d y) = d x d y. ∂ x − ∂ y IC ZZD ABΓ ∆EZHΘIKΛMNΞOΠPΣTY ΦX ΨΩ αβγδεζ ηθικλµνξ oπρστυφχ ψω Math numerals: 1234567890 Text numerals: 1 2 3 4 5 6 7 8 9 0 1 Set notation: x Ξ f (x) F − (ζ ) A string that works∈ poorly⊆ in bad math fonts: QJ qy g f Kp-Fonts This is the Kp-Fonts font. To use it, include this line in your preamble: \usepackage{kpfonts} Example text Theorem (Pólya enumeration theorem, unweighted). Let Γ be a group of permu- tations of a finite set X of “objects” and let Y be a finite set of “colors”. Then the number of orbits under Γ of Y -colorings of X is given by 1 Y X / Γ = tc(γ) Γ | | γ Γ X∈ where t = Y and where c(γ) is the number of cycles of γ as a permutation of X. | | Theorem (Green’s theorem, two dimensions). Let C be a positively-oriented, piecewise-smooth, simple closed curve in the plane. Let D be the region bounded by C. If L and M are functions defined on an open region containing D and have continuous partial derivatives, then ∂M ∂M (Ldx + M dy) = dx dy. ∂x − ∂y IC D ! ABΓ ∆EZHΘIKΛMNΞOΠP ΣTY "ΦXΨΩ αβγδζηθικλµνξoπρστυφχψω Math numerals: 1234567890 Text numerals: 1 2 3 4 5 6 7 8 9 0 Set notation: x Ξ f (x) F 1(ζ) ∈ ⊆ − A string that works poorly in bad math fonts: QJqygf n o New Century Schoolbook This is the New Century Schoolbook font. To use it, include this line in your preamble: \usepackage{fouriernc} Example text Theorem (Pólya enumeration theorem, unweighted). Let Γ be a group of permu- tations of a finite set X of “objects” and let Y be a finite set of “colors”. Then the number of orbits under Γ of Y -colorings of X is given by 1 Y X /Γ tc(γ) = Γ γ Γ ¯ ¯ | | ∈ ¯ ¯ X ¯ ¯ where t Y and where c(γ) is the number of cycles of γ as a permutation of X. = | | Theorem (Green’s theorem, two dimensions). Let C be a positively-oriented, piecewise-smooth, simple closed curve in the plane. Let D be the region bounded by C. If L and M are functions defined on an open region containing D and have continuous partial derivatives, then ∂M ∂M (L dx M d y) dx d y. + = ∂ − ∂ IC ÏDµ x y ¶ ABΓ∆EZHΘIKΛMNΞOΠPΣTY ΦXΨΩ αβγδ²ζηθικλµνξoπρστυφχψω Math numerals: 1234567890 Text numerals: 1 2 3 4 5 6 7 8 9 0 1 Set notation: x Ξ f (x) F− (ζ) ∈ ⊆ A string that works poorly in bad math fonts: © ¯ ª QJqygf ¯ Linux Libertine This is the Linux Libertine font. To use it, include these in your preamble: \usepackage{libertine} \usepackage[libertine]{newtxmath} Example text Theorem (Pólya enumeration theorem, unweighted). Let Γ be a group of permutations of a nite set X of “objects” and let Y be a nite set of “colors”. Then the number of orbits under Γ of Y-colorings of X is given by 1 Y X / Γ = tc (γ ) Γ γ Γ | | X∈ where t = Y and where c(γ ) is the number of cycles of γ as a permutation of X. | | Theorem (Green’s theorem, two dimensions). LetC be a positively-oriented, piecewise- smooth, simple closed curve in the plane. Let D be the region bounded by C. If L and M are functions dened on an open region containing D and have continuous partial derivatives, then ∂M ∂M (L dx + M dy) = dx dy. ∂x − ∂y IC D ! ABΓ∆EZHΘIKΛMN ΞOΠPΣTY ΦX ΨΩ" αβγδϵζηθικλµνξoπρστυϕχψω Math numerals: 1234567890 Text numerals: 1 2 3 4 5 6 7 8 9 0 Set notation: x Ξ f (x) F 1 (ζ ) ∈ ⊆ − A string that works( poorly in bad math) fonts: QJqygf Utopia This is the Utopia font. To use it, include this line in your preamble: \usepackage[utopia]{mathdesign} Example text Theorem (Pólya enumeration theorem, unweighted). Let Γ be a group of permuta- tions of a finite set X of “objects” and let Y be a finite set of “colors”. Then the number of orbits under Γ of Y -colorings of X is given by X 1 c γ Y /Γ = t ( ) Γ γ Γ | | X∈ where t = Y and where c (γ) is the number of cycles of γ as a permutation of X . | | Theorem (Green’stheorem, two dimensions). Let C be a positively-oriented, piecewise- smooth, simple closed curve in the plane. Let D be the region bounded by C . If L and M are functions defined on an open region containing D and have continuous par- tial derivatives, then ∂ M ∂ M L d x + M d y = d x d y. ∂ x ∂ y IC ZZD − ABΓ ∆EZH ΘIK ΛMN ΞOΠP ΣTY ΦX ΨΩ αβγδεζηθ ικλµνξoπρστυφχψω Math numerals: 1234567890 Text numerals: 1 2 3 4 5 6 7 8 9 0 1 Set notation: x Ξ f (x ) F − (ζ) A string that works∈ poorly⊆ in bad math fonts: Q J q y g f Times This is the Times font. To use it, include this line in your preamble: \usepackage{newtxtext,newtxmath} Example text Theorem (Pólya enumeration theorem, unweighted). Let Γ be a group of permutations of a finite set X of “objects” and let Y be a finite set of “colors”.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-