Spin Valve Systems for Angle Sensor Applications

Spin Valve Systems for Angle Sensor Applications

Spin Valve Systems for Angle Sensor Applications vom Fachbereich Material- und Geowissenschaften der Technischen Universität Darmstadt genehmigte Dissertation zur Erlangung des akademischen Grades eines Doktors der Ingenieurswissenschaften (Dr.-Ing.) eingereicht von M. Sc. Andrew Johnson aus Cincinnati, Ohio USA Referent: Prof. Dr.-Ing. Horst Hahn Korreferent: Prof. Dr.-Ing. Hartmut Fuess Tag der Einreichung: 25. Juli 2003 Tag der mündlichen Prüfung: 20. Januar 2004 Darmstadt 2004 D17 I Table of Contents 1 Introduction 1 2 Theory 5 2.1 Electrical Resistance and Magnetoresistance ......................................................5 2.2 Anisotropic Magneto Resistance (AMR).............................................................5 2.3 Giant Magneto Resistance (GMR).......................................................................7 2.4 Spin-Dependent Scattering ................................................................................10 2.4.1 Co/Cu Bandgap Structure........................................................................10 2.4.2 Mott Two-Current Model ........................................................................12 2.5 Spin Valve System.............................................................................................13 2.5.1 Magnetoresistance Characteristics of a Spin Valve.................................14 2.5.2 Uniaxial Anisotropy in the Free Layer and Pinned Layer.......................16 2.5.3 Interlayer Coupling in a Spin Valve System ...........................................18 2.5.4 Unidirectional Anisotropy: Exchange Bias .............................................19 2.5.5 Spin Valve Systems: Standard Materials and Microstructure. ................21 2.6 Exchange Bias Models.......................................................................................23 2.6.1 Ideal Interface Model...............................................................................24 2.6.2 Partial Domain Wall Model.....................................................................25 2.6.3 Random-Field Model...............................................................................26 2.6.4 Domain State Model................................................................................27 2.7 Synthetic Anti-Ferromagnet (SAF)....................................................................28 2.8 GMR 360° Angle Sensor ...................................................................................31 2.8.1 Design of GMR 360° Angle Sensor ........................................................31 2.8.2 Previous Research on GMR Angle Sensors ............................................33 2.8.3 Advantages of a GMR 360° Angle Sensor..............................................34 3 Experimental Methods 35 3.1 Sputter Deposition..............................................................................................35 3.1.1 The Sputtering Process ............................................................................35 3.1.2 Magnetron Sputtering ..............................................................................36 3.1.3 Unaxis Cyberite Sputtering System.........................................................37 3.1.4 Spin Valve Deposition Conditions ..........................................................39 3.2 Excimer-Laser....................................................................................................40 3.2.1 Theory and Basic Design of a Laser........................................................40 3.2.2 Excimer Lasers ........................................................................................41 4 Characterization Methods 45 4.1 Magnetoresistance measurements......................................................................45 4.1.1 Four-Point Probe......................................................................................45 II 4.1.2 Measurement Setup .................................................................................46 4.1.3 Analysis of the MR Rotation Curve ........................................................47 4.2 Structural Characterization ................................................................................48 4.2.1 X-Ray Diffraction....................................................................................48 4.2.2 X-Ray Reflectometry...............................................................................50 4.2.3 Auger Electron Spectroscopy ..................................................................51 4.3 Magnetic Characterization .................................................................................52 4.3.1 Alternating Gradient Magnetometer........................................................52 4.3.2 Magnetic Optical Kerr Effect ..................................................................53 5 Stoner-Wohlfarth Model: Spin Valve Systems 55 5.1 Applied Field Influence on Ferromagnetic Thin Film.......................................55 5.2 Model Description: Simple Spin Valve .............................................................55 5.3 Model for Spin Valve with SAF ........................................................................57 6 Results and Discussion 59 6.1 Cosine Dependence: Deviation Factors .............................................................61 6.1.1 AMR Effect .............................................................................................61 6.1.2 Interlayer Coupling..................................................................................65 6.1.3 Rotation of the Pinned Layer Magnetization..........................................70 6.1.4 Overview of the Cosine Deviation Factors..............................................73 6.1.5 Simulation of MR Rotation Curves.........................................................74 6.1.6 Cosine Deviation Factors: Implications for a 360° Angle Sensor...........80 6.1.7 Summary: Cosine Deviation Factors.......................................................82 6.2 Selection of Spin Valve System.........................................................................83 6.2.1 NiO Spin Valve System...........................................................................83 6.2.2 FeMn Spin Valve System .......................................................................86 6.2.3 IrMn Spin Valve System .........................................................................89 6.2.4 PtMn Spin Valve System.........................................................................91 6.2.5 PtMn Spin Valve System with SAF ........................................................94 6.2.6 Comparison Between the Different Spin Valve Systems......................101 6.2.7 Summary: Selection of Spin Valve System...........................................103 6.3 Multiple Deposition: Lift-off Method..............................................................104 6.3.1 Description of the Method.....................................................................104 6.3.2 Test of the Lift-off Method....................................................................104 6.3.3 Summary: Lift-off Method ...................................................................105 6.4 Ion Irradiation Method.....................................................................................106 6.4.1 Ion Irradiation of FeMn and IrMn Spin Valves.....................................106 6.4.2 Ion Irradiation of a Patterned Spin Valve Sample.................................108 6.4.3 Summary: Ion Irradiation Method........................................................110 6.5 Laser-writing Method ......................................................................................111 6.5.1 Laser Writing of FeMn and IrMn Simple Spin Valves .........................111 6.5.2 Reorientation Point: Gradual Change in Bias Direction .......................117 6.5.3 Complete Loss of GMR Effect and Exchange Bias .............................119 6.5.4 Source of the GMR Effect Reduction....................................................123 6.5.5 Domain State Model: Stability of the Exchange Bias Effect ................129 6.5.6 Laser Writing Experiments: PtMn Spin Valve with SAF .....................131 6.5.7 Antiferromagnetic Interlayer Coupling and the Reorientation Process.135 6.5.8 Induced Uniaxial Anisotropy of PtMn and the Reorientation Process..137 6.5.9 Induced Uniaxial Anisotropy: FeMn and IrMn Antiferromagnets........139 6.5.10Summary: Laser-Writing Method.........................................................141 7 Demonstrator of a 360° GMR Angle Sensor 143 III 7.1 Design and Fabrication ....................................................................................144 7.2 Demonstrator in Operation...............................................................................145 8 Summary of Conclusions 147 8.1 Summary ..........................................................................................................147 8.2 Future Work .....................................................................................................149 9 Zusammenfassung und Ausblick 151 9.1 Zusammenfassung............................................................................................151 9.2 Zukünftige Fragestellungen und Ausblick.......................................................153 10 Appendices 155 11 Citations 159 1 1Introduction Research on the Giant Magneto-Resistance (GMR) effect, large resistance changes due to an applied magnetic field, began

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    179 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us