Eutheria (Placental Introductory article Mammals) Article Contents . Introduction J David Archibald, San Diego State University, San Diego, California, USA . Basic Design . Taxonomic and Ecological Diversity Eutheria includes one of three major clades of mammals, the extant members of which are . Fossil History and Distribution referred to as placentals. Phylogeny Introduction doi: 10.1038/npg.els.0004123 Eutheria (or Placentalia) is the most taxonomically diverse each. Except for placentals that have supernumerary teeth of three branches or clades of mammals, the other two (e.g. some whales, armadillos, etc.), in extant placentals, the being Metatheria (or Marsupialia) and Prototheria (or number of teeth is at most three upper and lower incisors, Monotremata). When named by Gill in 1872, Eutheria in- one upper and lower canine, four upper and lower premo- cluded both marsupials and placentals. It was Huxley in lars and three upper and lower molars. Pigs retain this pat- 1880 who recognized Eutheria basically as used today to tern, and except for one fewer upper molar, a domestic dog include only placentals. McKenna and Bell in their Clas- does as well. Compared to reptiles, mammals have fewer sification of Mammals published in 1997, chose to use Pla- skull bones through fusion and loss, although bones are centalia rather than Eutheria to avoid the confusion of variously emphasized in each of the three major mammalian what taxa should be included in Eutheria. Others such as taxa. See also: Digestive system of mammals; Ingestion in Rougier have used Eutheria and Placentalia in the sense mammals; Mesozoic mammals; Reptilia (reptiles) used here. Placentalia includes all extant placentals and Physiologically, mammals are all endotherms with var- their most recent common ancestor. Eutheria is retained to ying degrees of efficiency. They are also homeothermic include all extinct mammals that share a more recent com- with a relatively high resting temperature. These charac- mon ancestor with placentals than they do with Met- teristics are also found in birds, but because of anatomical atheria. See also: Mammalia (mammals); Marsupialia differences, the attainment of endothermy evolved con- (marsupials); Monotremata vergently in mammals and birds. In mammals, the large aorta leaving the heart bends to the left while in birds and their reptilian relatives the aorta bends to the right. Al- though both birds and mammals have diaphragms, they Basic Design are formed very differently, again indicating convergent evolution. See also: Vertebrate functional morphology and Eutherians share with all other mammals some key inno- physiology; Thermoregulation in vertebrates vations that differentiate them from other amniote verte- Reproductively, mammals show all three major kinds of brates – Reptilia (including Aves). While in reptiles there reproduction found in amniote vertebrates – oviparity or can be many generations of teeth, in mammals there are at egg-laying, ovoviviparity where the embryo is retained in- most two. Eutherians, if they have teeth, retain the ancestral ternally by the mother but there is little maternal support, mammal condition of two generations (deciduous and per- and euviviparity where the embryo is retained internally by manent) of teeth. Reptiles have a jaw joint composed of the the mother and much support is given by the mother. It is articular (lower jaw) and quadrate (upper jaw), and have this last condition, euviviparity, that characterizes placen- only one ear ossicle, the columella. In all mammals, the tals. The name placental derives from the dominant extra- articular and quadrate become incorporated into the middle embryonic structure of the same name found in this group. ear as the outermost two ear ossicles, the malleus and incus, Both marsupials and placentals have a placenta but of con- respectively, which articulate with the innermost stapes siderably different structure. In marsupials two extraem- (columella). While prototherians lack teeth as adults, met- bryonic structures, the yolk sac and the chorion, fuse atherians retain at most five upper and four lower incisors, through part of their extent to form the choriovitelline pla- one upper and one lower canine, three upper and three lower centa. In placentals, the allantois and chorion fuse to form premolars, four upper and lower molars each. This condi- the chorioallantoic placenta. Although the choriovitelline tion is still found in the opossum, common to many areas of placenta of the marsupial compared to the chorioallantoic North America. Primitively, eutherians had a similar placenta of the placental does not produce as many hor- number of incisors and canines, but had five upper and mones to sustain itself or provide as long a period of lower premolars each and three upper and lower molars sustenance for the developing embryo, it should not be ENCYCLOPEDIA OF LIFE SCIENCES & 2005, John Wiley & Sons, Ltd. www.els.net 1 Eutheria (Placental Mammals) thought of as more primitive. Rather, because the two kinds ities while pregnant. Placentals, similar to other mammals, of placenta are formed differently they almost certainly are endothermic. This means they produce their heat evolved convergently. See also: Reproduction in eutherian through metabolic means, perhaps as much as 80% of con- mammals; Reproduction in mammals: general overview; sumed food goes towards maintaining endothermy. The Reproduction in monotremes and marsupials common ancestor of all mammals, as well as that leading to eutherians, was a small, insectivorous quadruped that main- tained five digits on all four limbs. Such a generalized pat- tern permitted a greater diversity of stance and locomotion Taxonomic and Ecological Diversity in later eutherians. For example, placentals have limbs greatly modified for swimming, flight, digging, fleet-foot- Almost 4700 genera of extinct and extant eutherians are edness, capture of prey, brachiation, etc. In contrast, birds recognized. Of these, some 1050 are extant and include al- are represented by more species today (9000) than are pla- most 4400 extant species (Table1). Although relatively low in centals but show less diversity in locomotory patterns. This taxonomic abundance, placentals (extant eutherians) argu- is because in contrast to mammals, the common ancestor of ably occupy one of the widest arrays of environments of any birds (a small theropod dinosaur) had already acquired a comparable group of vertebrates. They range in size from specialized habitus with hindlimbs used for locomotion and shrews to blue whales, from completely marine through forelimbs for capture of prey (flight came later). Today pla- terrestrial to fully volant. Three important factors that centals are found in every ocean and with a few exceptions played a role in this considerable ecological diversity are on all landmasses. Even Antarctica has seals breeding on mode of reproduction, level of metabolism and an ancestral, coastal beaches and bats have reached most oceanic islands. generalized quadrupedal stance. The mode of reproduction See also:Aves(birds) in placentals, euviviparity, includes considerable in utero development of the embryo with all support and sustenance coming from the mother through the chorioallantoic placenta. This allows the mother to continue normal activ- Fossil History and Distribution Table 1 Numbers of species of living eutherians (placental) The earliest known fossils of eutherians come from Asia and North America. The oldest known eutherian is Eomaia Class from China, which comprises of a flattened skeleton with Mammalia skull from beds of Barremian age ( 125 million years ago Subclass (Ma). 2001). Other early eutherians are restricted to mostly Prototheria dental and a few skull remains. The type and only known Theria specimen of Montanalestes comes from beds of Aptian– Infraclass Albian age ( 110 million years old) in Montana. Pro- Marsupialia kennalestes comes from slightly younger beds ( 105 mil- Placentalia lion years old) in Mongolia, but is represented by Order numerous, mostly undescribed dental remains. All three Xenarthra (29 species) taxa, and some other slightly younger forms, also from Pholidota (7 species) Asia, show the typical eutherian pattern of at most five Lagomorpha (80 species) upper and lower premolars and three upper and lower Rodentia (2024 species) molars. The last upper and lower premolars in the earliest Macroscelidea (15 species) eutherians as compared to metatherians already show Primates (236 species) trends towards molarization (i.e. adding extra cusps found Scandentia (19 species) on molars). The labial (cheek side) of the upper molars has Dermoptera (2 species) a wide area called the stylar shelf which unlike in contem- Chiroptera (928 species) porary metatherians has few cusps. The back, lower mar- Carnivora (271 species) gin of the lower jaw, the dentary, has a projection (angular Insectivora (429 species) process) that points backwards in eutherians but internally Artiodactyla (220 species) in metatherians. These forms were all small, ranging in size Cetacea (78 species) from a shrew to an opossum. The earliest eutherian Eomaia Tubulidentata (1 species) shows both scansorial (climbing) and arboreal (tree-living) Perissodactyla (18 species) adaptations, compared to other Cretaceous eutherians Hyracoidea (6 species) that, when known, are terrestrial and sometimes cursorial Proboscidea (2 species) (running). Diets were mostly carnivorous to insectivorous, Sirenia (5 species) but omnivory and probably
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages4 Page
-
File Size-