Lecture 9 • Strained-Si Technology I: Device Physics – Background – Planar Mosfets –Finfets Reading: • Y

Lecture 9 • Strained-Si Technology I: Device Physics – Background – Planar Mosfets –Finfets Reading: • Y

Strain Analysis in Daily Life Lecture 9 • Strained-Si Technology I: Device Physics – Background – Planar MOSFETs –FinFETs Reading: • Y. Sun, S. Thompson, T. Nishida, “Strain Effects in Semiconductors,” Springer, 2010. • multiple research articles (reference list at the end of this lecture) Mechanical Stress/Strain Analysis Fs Stress: results from the repulsive electromagnetic force between Fn ionic cores when the lattice L ∆L atoms deviate from their equilibrium positions. Stress = lim Strain = lim Stress Types Stress Tensor Extensional Shear Tensile Compressive 10/25/2013 Nuo Xu EE 290D, Fall 2013 2 Strain-Stress Relationship Elasticity Tensor: • assuming strain has linear response to stress (Hooke’s Law) • can be simplified into 3 independent variables, for cubic lattices (e.g. Si) If x, y, z along main crystal axis: OR for a certain direction: Extensional Strain/Stress Shear Strain/Stress 10/25/2013 Nuo Xu EE 290D, Fall 2013 3 Impact of Strain on Semiconductors • Energy Band Splitting • Evs. k curvature change Si Ge w/o s w/ hs w/ us GaAs CB 4 2 VB HH 1GPa <110> LH Unstrained Compressive Y. Sun, JAP (2007) 10/25/2013 Nuo Xu EE 290D, Fall 2013 4 Strain Impact on Si Bandstructure: Planar N-MOSFET Gate Gate Gate [110] Source Drain Source Drain Source Drain Unstrained Longitudinal Vertical Electrons Δ2 Electron applying strain Energy Splitting E-k Curvature Lower DOS available for Sub-band reoccupation Change Scattering Lowered average m* Transport m* Reduced (Inter-valley) Reduction Scattering Rates 10/25/2013 Nuo Xu EE 290D, Fall 2013 K. Uchida, IEDM (2008) 5 Strain Impact on Si Bandstructure: Planar P-MOSFET [110] Gate Gate Gate Source Drain Source Drain Source Drain Unstrained Longitudinal Vertical Holes Heavy Hole Light Hole Split-off Hole applying strain Energy Splitting E-k Curvature Change Lower DOS available for Sub-band reoccupation Transport m* Reduction Scattering Lowered average m* Reduced (Inter-sub-band) Scattering Rates 10/25/2013 Nuo Xu EE 290D, Fall 2013 6 Strain Enhancement on Si MOSFET Carrier Mobility [110] Electron Hole D. Esseni, JCE (2009) F. Conzati, SSE (2009) • For N-MOSFET, electron mobility enhancement saturates at ~1.5 GPa <110>-uniaxial tensile stress . • For P-MOSFET, hole mobility enhancement saturates at very high <110>-uniaxial compressive stress. 10/25/2013 Nuo Xu EE 290D, Fall 2013 7 Impact of Quantum Confinement Electrons under Biaxial Tensile Stress Holes under Uniaxial Comp. Stress O. Weber, IEDM (2007) E. X. Wang, TED (2006) • N-MOSFET: e% degrades at higher Eeff, due to the quantum confinement counters the strain-induced sub-band splitting. * • P-MOSFET: h% maintains vs. Eeff due to the dominant m reduction. 10/25/2013 Nuo Xu EE 290D, Fall 2013 8 Analytical Modeling for Carrier Mobility Enhancement due to Strain • Piezoresistance (PR) Model Too simple Limited predictive ability (by ignoring Eeff, Strain- dependence…) • Sub-band Reoccupation Model Analytically models the energy-band top and m* change vs. strain Trade-off between computing loads and accuracy J.-S. Lim, EDL (2004) 10/25/2013 Nuo Xu EE 290D, Fall 2013 9 Numerical Approach: Self-Consistent Poisson-Schrödinger Simulation scPS Approach 6x6 Luttinger-Kohn Hamiltonian for Holes Schrödinger equation L 2 PQ L M02 M 222 22 2 Pkkk () d 2m 1 x yz 3 0 ez() () z E () z LPQ 02 M Q L *2 nnn 2 2 2mdzz Qkkk (2)22 2 3 2 x yz M 02PQ L L Q 2m0 2 2 gn nz() dkfE ( ) (,) kz L nn2 k 02MLPQM 2 2 2 k Lkikk3( 3 x yz ) m L 3 0 22QLMP 0 2 2 2 22 nz() n () z M 3[23 (kkxy ) ikk 2 xy ) n 3 L 2m 220MLQ P 0 n 2 2 ddz() ()z eNDA N pz () nz () Impacts of strain on energy-band dz dz top as well as curvature change Poisson equation will be completely included into the Hamiltonian. Computationally intensive. 10/25/2013 Nuo Xu EE 290D, Fall 2013 10 Impact of Si Body Thickness Scaling [110] scPS simulations, N. Xu, VLSI-T (2011) N-Channel (Electron) P-Channel (Hole) 400 0.35 1.4 160 Electron Mobility Change 380 0.30 1.2 Hole Mobility Change ) 140 1GPa Longi. Comp. ) 1.0 /V.s 0.25 2 360 1GPa Longitudinal Tensile 1GPa Verti. Tens. 1GPa Trans. Tens. /V.s cm 1GPa Vertical Compressive 2 0.8 ( 120 Unstrained 0.20 Unstrained 340 cm ( 0.6 0.15 100 320 0.4 (100)/<110> 0.10 80 ( N =1.0e13cm-2 300 inv 0.2 h ( 0.05 Hole Mobility Mobility Hole h Electron Mobility 60 ) e 0.0 280 -2 e (100)/<110> P =1.0e13cm 0.00 ) inv 40 4 6 8 10 12 14 4 6 8 10 12 14 Silicon Film Thickness (nm) Silicon Film Thickness (nm) • Stress enhancement diminishes for electrons as tSOI scaled below 5nm, but not for holes. 10/25/2013 Nuo Xu EE 290D, Fall 2013 11 Impact of tSi Scaling on Piezoresistive Coefficients [110] Open symbols Simulated Closed Symbols Measured N-Channel (Electron) P-Channel (Hole) 80 20 zz 60 ) ) -1 Vertical zz 10 -1 Pa Transverse xx yy Pa 40 Longitudinal -11 xx Longitudinal -11 10 0 xx Transverse ( 10 yy Uchida, IEDM 04,08 ( 20 yy Vertical -10 Xu, VLSI 11 zz Uchida, IEDM 08 0 Xu, VLSI 11 -20 -20 -30 xx Piezo-Coefficient yy -40 Piezo-Coefficient -40 zz -50 -60 246810122 4 6 8 10 12 Silicon Body Thickness (nm) Silicon Body Thickness (nm) • As tSi decreases, Πxx decreases due to diminished sub-band reoccupation and inter-valley scattering reduction. N. Xu, SOI Conf. (2012) 10/25/2013 Nuo Xu EE 290D, Fall 2013 12 Strain Enhancement on FinFET [110] Carrier Mobility: Electrons (110)-sidewall N-FinFET Unstrained Strained nd ∆4, 2 st ∆2,1 st ∆4, 1 (100)-sidewall N-FinFET (110)-sidewall N-FinFET N. Serra, TED (2010) 10/25/2013 Nuo Xu EE 290D, Fall 2013 13 Strain Enhancement on FinFET Carrier Mobility: Holes Equi-energy contours from the 1st HH Planar MOSFET (100)/<110> (100) Surface [110] FinFET (110)/<110> [110] (110) Surface unstrained σx = -1 GPa Courtesy of L. Smith (Synopsys) 10/25/2013 Nuo Xu EE 290D, Fall 2013 14 Impact of Fin Width Scaling on [110] Piezoresistive Coefficients Open symbols Simulated Closed Symbols Measured N-Channel (Electron) P-Channel (Hole) 80 80 60 zz ) ) -1 -1 60 Pa Pa 40 xx -11 -11 40 Saitoh, VLSI 08 20 Xu, EDL 12 Shin, EDL 06 20 Xu, EDL 12 Saitoh, VLSI 08 Serra, TED 10 Suthram, EDL 08 Krishinamohan, IEDM 08 Suthram, EDL 08 0 0 yy -20 zz -20 -40 Piezo-Coefficient (10 Piezo-Coefficient Piezo-Coefficient (10 xx -40 yy -60 6 9 12 15 18 21 24 6 9 12 15 18 21 24 Silicon Fin Width (nm) Silicon Fin Width (nm) • No substantial degradation in piezo-resistance is seen with decreasing fin width. N. Xu, SOI Conf. (2012) 10/25/2013 Nuo Xu EE 290D, Fall 2013 15 Impact of Fin Aspect-Ratio scPS simulations, N. Xu, IEDM (2010) N-Channel (Electron) P-Channel (Hole) 12 -2 Open: H = 58nm, W = 20nm 400 N = 9x10 cm 500 Si Si inv Filled: H = 20nm, W = 58nm Si Si CESL(Uniaxial) /Vs) 2 Biaxial Compressive /Vs) 400 2 Biaxial Tensile 300 <110> Fin <100> CESL (Uniaxial) 300 <100> Biaxial Tensile 200 <110> CESL (Uniaxial) <110> Biaxial Tensile 200 Hole Mobility (cm Mobility Hole Open: H = 58nm, W = 20nm Electron Mobility (cm Electron Si Si P =1x1013cm-2 Filled: H = 20nm, W = 58nm inv Si Si 100 100 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 Stress (MPa) Stress (MPa) • μn is highest for <100> uniaxial-strained Tri-Gate, μp is highest for <110> uniaxial-strained Tri-Gate at high level stress. 10/25/2013 Nuo Xu EE 290D, Fall 2013 16 Strain Enhancement on Short-Channel MOSFET Performance Expt. results, N. Xu, VLSI-T (2011,2012) Mobility vs. Gate Length ΔION/ION vs. Δidlin/I dlin under strain 12 14 p-channel FDSOI S = 0.59 Long Channel +12% 10 Lg = 30nm ~ 80nm 12 -2 P =7.0e12cm inv 8 |=1V (%) 10 ds Forward Back Bias 6 V = -0.5 ~ -1.0V S = 0.54 8 back 300K 4 P =9.5e12cm-2 6 inv Increase @ |V on short channel % I 2 Wafer Bending S = -70 ~ -170MPa 4 I % xx d,lin Stress-induced Enhancement (%) 0 30 40 50 60 70 80 90 100 0 2 4 6 8 101214161820 I Increase @ |V |=10mV (%) Gate Length (nm) d,lin ds • Enhancement in apparent mobility is maintained vs. Lg scaling. • ~50% of Δµ/µ can be transferred to ΔION/ION. 10/25/2013 Nuo Xu EE 290D, Fall 2013 17 References 1. Y. Sun et al., “Physics of Strain Effects in Semiconductors and metal-oxide-semiconductor field- effect transistors,” Journal of Applied Physics, 101, 104503, 2007. 2. F. Conzati et al., ”Drain Current Improvements in Uniaxially Strained P-MOSFETs: A Multi-Subband Monte Carlo Study,” Solid-State Electronics, vol.53, pp.706-711, 2009. 3. D. Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations and Strain Engineering,” Journal of Computational Electronics, vol.8, pp.209-224, 2009. 4. N. Xu et al., “Stress-induced Performance Enhancement in Ultra-Thin-Body Fully Depleted SOI MOSFETs: Impacts of Scaling,” Symposium on VLSI Technology Dig., p.162-163, 2011. 5. K. Uchida et al., “Physical Mechanisms of Electron Mobility Enhancement in Uniaxial Stressed MOSFETs and Impacts of Uniaxial Stress Engineering in Ballistic Regime,” IEEE International Electron Device Meeting, Tech.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us