ON THE DESIGN OF INJECTION-LOCKED FREQUENCY DIVIDERS FOR MM- WAVE APPLICATIONS by Lakshmi Lavanya Bodepu B.Tech., Indian Institute of Technology, Kharagpur, 2016 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Electrical and Computer Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) Novemeber 2019 © Lakshmi Lavanya Bodepu, 2019 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, a thesis entitled: ON THE DESIGN OF INJECTION-LOCKED FREQUENCY DIVIDERS FOR MM- WAVE APPLICATIONS submitted by Lakshmi Lavanya Bodepu in partial fulfillment of the requirements for the degree of Master of Applied Science in Electrical and Computer Engineering Examining Committee: Prof. Shahriar Mirabbasi, Electrical and Computer Engineering Supervisor Prof. Sudip Shekhar, Electrical and Computer Engineering Supervisory Committee Member Prof. Alireza Nojeh, Electrical and Computer Engineering Supervisory Committee Member ii Abstract This work presents the design and measurement results of two injection-locked frequency dividers (ILFDs) that are intended for mm-wave applications. The two prototypes are fabricated in a 65-nm CMOS process. The first direct-injection ILFD achieves a measured locking range of 24.5 GHz to 43 GHz while consuming 1.3 mW from a 0.48-V supply with a 0 dBm input injection power. The second ILFD design is based on the dual-injection multi-band architecture and as compared to the first design enhances the locking range by a factor of 2. The dual-injection ILFD achieves a locking range of 18 GHz to 61 GHz while consuming 1.8 mW from a 0.5-V supply with a 0 dBm input injection power. The design is optimized to improve the locking range and avoid in-band loss of lock which is a drawback of transformer-based higher order ILFDs. Furthermore, techniques such as shunt inductor peaking to reduce power consumption and dual- injection of the input signal through a distributed multi-order resonator to improve the locking range are explored and discussed. The best achieved locking range is 108.8 % at 39.5 GHz. The locking range obtained makes the divider suitable for integration in a multi-band mm-wave frequency synthesizer that can support international roaming. iii Lay Summary The increasing demand for mobile phones that can support international roaming is the main driving force behind implementation and deployment of multi-band millimeter-wave (mm- wave) wireless systems. In multi-standard systems, programmable frequency dividers are used to adjust the frequency of the main oscillator to the available bands of interest. Due to portable nature of such applications, power consumption of these dividers should be minimal, and they should not degrade the operation of the main oscillator. In this thesis, the design of two frequency dividers that work on the principle of injection locking are discussed. The two dividers are fabricated, and the integrated circuit prototypes are successfully measured, and their performance is compared with that of the state-of-the-art. iv Preface I am the main contributor to the work presented in this thesis and am responsible for the schematic, layout and the measurements of the two fabricated chips. My supervisor, Professor Shahriar Mirabbasi, guided me throughout the crucial phases of the research. Professor Sudip Shekhar has taken part in various fruitful discussions. Mengye Cai helped in the testing of my chips. I am preparing a publication based on the material presented in Chapters 3 and 4 of the thesis. v Table of Contents Abstract ......................................................................................................................................... iii Lay Summary ............................................................................................................................... iv Preface .............................................................................................................................................v Table of Contents ......................................................................................................................... vi List of Tables ..................................................................................................................................x List of Figures ............................................................................................................................... xi List of Abbreviations ................................................................................................................. xiv Acknowledgements .................................................................................................................... xvi Dedication .................................................................................................................................. xvii Chapter 1: Introduction ................................................................................................................1 1.1 Motivation ....................................................................................................................... 1 1.2 Prior-art ........................................................................................................................... 4 1.3 Overview ......................................................................................................................... 5 Chapter 2: Design of an injection-locked frequency divider .....................................................6 2.1 Principle of injection locking in a direct ILFD ............................................................... 6 2.1.1 Effect of quality factor in a direct injection locked divider ........................................ 8 2.2 Design of a mm-wave ILFD ........................................................................................... 9 2.2.1 Design of the oscillator LC tank. ................................................................................ 9 2.2.2 Design of the transformer ......................................................................................... 12 2.2.3 Design of the active devices ..................................................................................... 15 2.2.3.1 Dimensions and biasing of the injection device. ............................................... 15 vi 2.2.3.2 Dimensions of the cross-coupled pair ................................................................ 17 2.3 Design verification ........................................................................................................ 19 2.3.1 Input sensitivity curve ............................................................................................... 19 2.3.2 Phase slipping in an ILFD......................................................................................... 20 2.3.3 Increase in the output power with the injection signal. ............................................ 21 2.3.4 Locking range for different 푉퐺푆,3 ........................................................................... 21 2.3.5 Process voltage temperature (PVT) effects on the locking range (LR) .................... 22 2.3.5.1 Locking range variations with VDD ................................................................. 22 2.3.5.2 Locking range variations with temperature of the devices. .............................. 23 2.3.5.3 Locking range variations with process ............................................................. 23 2.4 Phase noise analysis in an ILFD ................................................................................... 24 Chapter 3: Design of multi-band injection-locked frequency divider ....................................27 3.1 Multi-order resonators using transformers.................................................................... 27 3.1.1 In-band loss of lock in a transformer based ILFD .................................................... 29 3.2 Design of a multi-band resonator. ................................................................................. 30 3.2.1 Inductive – peaking to enhance the magnitude response of an RLC tank. ............... 30 3.2.2 Switchable multi-band resonator .............................................................................. 31 3.3 Distributed dual-injection ............................................................................................. 34 3.3.1 Series peaking of the input mixer. ............................................................................ 37 3.4 Design verification of the multi-band ILFD ................................................................. 37 3.4.1 Overdrive voltage of the injection devices vs locking range .................................... 37 3.4.2 Overdrive voltage of the injection devices vs output power..................................... 39 3.4.3 Advantages of multi - band resonator ....................................................................... 39 vii 3.4.2 PVT effects on the locking range ............................................................................... 39 3.4.3.1 Locking range variations with VDD ................................................................. 40 3.4.3.2 Locking range variations with process ............................................................. 40 3.4.3.3 Locking range variations with temperature .....................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages81 Page
-
File Size-