
<p>GENERALIZATIONS OF EULER NUMBERS AND <br>POLYNOMIALS </p><p>QIU-MING LUO AND FENG QI <br>Abstract. In this paper, the concepts of Euler numbers and Euler polynomials are generalized, and some basic properties are investigated. </p><p>1. Introduction </p><p>It is well-known that the Euler numbers and polynomials can be defined by the following definitions. </p><p>Definition 1.1 ([1]). The Euler numbers E<sub style="top: 0.1245em;">k </sub>are defined by the following expansion </p><p>∞</p><p>2e<sup style="top: -0.3012em;">t </sup></p><p>e<sup style="top: -0.2398em;">2t </sup>+ 1 </p><p>E<sub style="top: 0.1246em;">k </sub></p><p>X</p><p>=</p><p>t<sup style="top: -0.3428em;">k</sup>, |t| ≤ π. </p><p>(1.1) (1.2) k! </p><p>k=0 </p><p>In [4, p. 5], the Euler numbers is defined by </p><p>ꢀ ꢁ </p><p>∞</p><p>n<br>2n </p><p>2e<sup style="top: -0.3013em;">t/2 </sup></p><p>e<sup style="top: -0.2398em;">t </sup>+ 1 </p><p>t</p><p>(−1) E<sub style="top: 0.1245em;">n </sub></p><p>t</p><p>X</p><p></p><ul style="display: flex;"><li style="flex:1">= sech </li><li style="flex:1">=</li></ul><p></p><p>,</p><p>|t| ≤ π. </p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">(2n)! </li><li style="flex:1">2</li></ul><p></p><p>n=0 </p><p>Definition 1.2 ([1, 4]). The Euler polynomials E<sub style="top: 0.1245em;">k</sub>(x) for x ∈ R are defined by </p><p>∞</p><p>2e<sup style="top: -0.3013em;">xt </sup></p><p>e<sup style="top: -0.2398em;">t </sup>+ 1 <br>E<sub style="top: 0.1246em;">k</sub>(x) k! </p><p>X</p><p>=</p><p>t<sup style="top: -0.3427em;">k</sup>, |t| ≤ π. </p><p>(1.3) </p><p>k=0 </p><p>It can also be shown that the polynomials E<sub style="top: 0.1245em;">i</sub>(t), i ∈ N, are uniquely determined by the following two properties </p><p></p><ul style="display: flex;"><li style="flex:1">E<sub style="top: 0.2052em;">i</sub><sup style="top: -0.3428em;">0</sup>(t) = iE<sub style="top: 0.1245em;">i−1</sub>(t), E<sub style="top: 0.1245em;">0</sub>(t) = 1; </li><li style="flex:1">(1.4) </li></ul><p></p><ul style="display: flex;"><li style="flex:1">(1.5) </li><li style="flex:1">E<sub style="top: 0.1246em;">i</sub>(t + 1) + E<sub style="top: 0.1246em;">i</sub>(t) = 2t<sup style="top: -0.3428em;">i</sup>. </li></ul><p></p><p>2000 Mathematics Subject Classification. 11B68. </p><p>Key words and phrases. Euler numbers, Euler polynomials, generalization. The authors were supported in part by NNSF (#10001016) of China, SF for the Prominent </p><p>Youth of Henan Province, SF of Henan Innovation Talents at Universities, NSF of Henan Province (#004051800), Doctor Fund of Jiaozuo Institute of Technology, China. </p><p>A</p><p>This paper was typeset using A S-LT X. </p><p>M</p><p>E</p><p>1</p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">Q.-M. LUO AND F. QI </li></ul><p></p><p>Euler polynomials are related to the Bernoulli numbers. For information about <br>Bernoulli numbers and polynomials, please refer to [1, 2, 3, 4]. <br>In this paper, we will give some generalizations of the concepts of Euler numbers and Euler polynomials, and research their basic properties. </p><p>2. Generalizations of Euler numbers and polynomials </p><p>In this section, we give two definitions, the generalized Euler number and the generalized Euler polynomial, which generalize the concepts of Euler number and Euler polynomial. </p><p>Definition 2.1. For positive numbers a, b, c, the generalized Euler numbers E<sub style="top: 0.1245em;">k</sub>(a, b, c) are defined by </p><p>∞</p><p>2c<sup style="top: -0.3012em;">t </sup>b<sup style="top: -0.2398em;">2t </sup>+ a<sup style="top: -0.2398em;">2t </sup></p><p>E<sub style="top: 0.1246em;">k</sub>(a, b, c) </p><p>X</p><p>=</p><p>t<sup style="top: -0.3428em;">k</sup>. </p><p>(2.1) k! </p><p>k=0 </p><p>Definition 2.2. For any given positive numbers a, b, c and x ∈ R, the generalized Euler polynomials E<sub style="top: 0.1245em;">k</sub>(x; a, b, c) are defined by </p><p>∞</p><p>2c<sup style="top: -0.3012em;">xt </sup>b<sup style="top: -0.2398em;">t </sup>+ a<sup style="top: -0.2398em;">t </sup></p><p>E<sub style="top: 0.1246em;">k</sub>(x; a, b, c) </p><p>X</p><p>=</p><p>t<sup style="top: -0.3428em;">k</sup>. </p><p>(2.2) k! </p><p>k=0 </p><p>If taking a = 1, b = c = e, then Definition 1.1 and Definition 1.2 can be deduced from Definition 2.1 and Definition 2.2 respectively. Thus, the Definition 2.1 and Definition 2.2 generalize the concepts of Euler numbers and polynomials. </p><p>3. Some properties of the generalized Euler numbers </p><p>In this section, we study some basic properties of the generalized Euler numbers defined in Definition 2.1. </p><p>Theorem 3.1. For positive numbers a, b, c and real number x ∈ R, we have </p><p>E<sub style="top: 0.1246em;">0</sub>(a, b, c) = 1, E<sub style="top: 0.1246em;">k</sub>(1, e, e) = E<sub style="top: 0.1246em;">k</sub>, E<sub style="top: 0.1246em;">k</sub>(1, e<sup style="top: -0.3427em;">1/2</sup>, e<sup style="top: -0.3427em;">x</sup>) = E<sub style="top: 0.1246em;">k</sub>(x), </p><p>(3.1) (3.2) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>ln c − 2 ln a <br>E<sub style="top: 0.1245em;">k</sub>(a, b, c) = 2<sup style="top: -0.3428em;">k</sup>(ln b − ln a)<sup style="top: -0.3428em;">k</sup>E<sub style="top: 0.1245em;">k </sub></p><p>,</p><p>2(ln b − ln a) </p><p>ꢀ ꢁ </p><p>k</p><p>X</p><p>k<br>E<sub style="top: 0.1245em;">k</sub>(a, b, c) = </p><p></p><ul style="display: flex;"><li style="flex:1">(ln b − ln a)<sup style="top: -0.3428em;">j</sup>(ln c − ln a − ln b)<sup style="top: -0.3428em;">k−j</sup>E<sub style="top: 0.1245em;">j</sub>. </li><li style="flex:1">(3.3) </li></ul><p></p><p>j</p><p>j=0 </p><p>Proof. The formulae in (3.1) follow from Definition 1.1, Definition 1.2, and Definition 2.1 easily. </p><p></p><ul style="display: flex;"><li style="flex:1">GENERALIZATIONS OF EULER NUMBERS AND POLYNOMIALS </li><li style="flex:1">3</li></ul><p></p><p>By Definition 1.2 and Definition 2.1 and direct computation, we have </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><p>ln c−2 ln a </p><p>2c<sup style="top: -0.3013em;">t </sup>b<sup style="top: -0.2398em;">2t </sup>− a<sup style="top: -0.2398em;">2t </sup></p><p></p><ul style="display: flex;"><li style="flex:1">2 exp </li><li style="flex:1">· 2t(ln b − ln a) </li></ul><p></p><p>2(ln b−ln a) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><p>==exp 2t(ln b − ln a) + 1 <br>(3.4) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>∞</p><p>ln c − 2 ln a t<sup style="top: -0.3013em;">k </sup></p><p>X</p><p>2<sup style="top: -0.3427em;">k</sup>(ln b − ln a)<sup style="top: -0.3427em;">k</sup>E<sub style="top: 0.1246em;">k </sub></p><p>.</p><p>2(ln b − ln a) k! </p><p>k=0 </p><p>Then, the formula (3.2) follows. </p><p>ꢂ ꢃ </p><p>P</p><p>k</p><p>j=0 </p><p>kj</p><p>1</p><p>−j </p><p></p><ul style="display: flex;"><li style="flex:1">Substituting E<sub style="top: 0.1245em;">k</sub>(x) = </li><li style="flex:1">2</li><li style="flex:1">(x− <sub style="top: 0.2863em;">2 </sub>)<sup style="top: -0.3013em;">k−j</sup>E<sub style="top: 0.1245em;">j </sub>into the formula (3.2) yields the </li></ul><p>formula (3.3). </p><p>ꢀ</p><p>Theorem 3.2. For k ∈ N, we have </p><p>ꢀ ꢁ </p><p>k−1 </p><p>X</p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p>12</p><p>kj<br>E<sub style="top: 0.1245em;">k</sub>(a, b, c) = − </p><p>(2 ln b − ln c)<sup style="top: -0.3428em;">k−j </sup>+ (2 ln a − ln c)<sup style="top: -0.3428em;">k−j </sup>E<sub style="top: 0.1245em;">j</sub>(a, b, c), (3.5) </p><p>j=0 </p><p>E<sub style="top: 0.1245em;">k</sub>(a, b, c) = E<sub style="top: 0.1245em;">k</sub>(b, a, c), </p><p>(3.6) (3.7) </p><p>E<sub style="top: 0.1245em;">k</sub>(a<sup style="top: -0.3428em;">α</sup>, b<sup style="top: -0.3428em;">α</sup>, c<sup style="top: -0.3428em;">α</sup>) = α<sup style="top: -0.3428em;">k</sup>E<sub style="top: 0.1245em;">k</sub>(a, b, c). </p><p>Proof. By Definition 2.1, direct calculation yields </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">t</li><li style="flex:1">t</li></ul><p></p><p>∞</p><p>k</p><p>X</p><p>12</p><p>b<sup style="top: -0.3013em;">2 </sup></p><p>c</p><p>a<sup style="top: -0.3013em;">2 </sup></p><p>ct</p><p>1 = <br>=<br>+</p><p>E<sub style="top: 0.1245em;">k</sub>(a, b, c) </p><p>k! </p><p>k=0 </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>∞</p><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">k</li></ul><p></p><p>∞</p><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">k</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">b<sup style="top: -0.3013em;">2 </sup></li><li style="flex:1">a<sup style="top: -0.3013em;">2 </sup></li></ul><p></p><p>t</p><p></p><ul style="display: flex;"><li style="flex:1">X</li><li style="flex:1">X</li></ul><p></p><p>12</p><p>t</p><p></p><ul style="display: flex;"><li style="flex:1">ln </li><li style="flex:1">+</li></ul><p>ln ln </p><p>E<sub style="top: 0.1246em;">k</sub>(a, b, c) </p><p>(3.8) k! </p><p></p><ul style="display: flex;"><li style="flex:1">c</li><li style="flex:1">c</li></ul><p></p><p>k! </p><p></p><ul style="display: flex;"><li style="flex:1">k=0 </li><li style="flex:1">k=0 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><p>ꢀ ꢁ ꢀ </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>∞</p><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">k−j </li><li style="flex:1">k−j </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">X</li><li style="flex:1">X</li></ul><p></p><p>12</p><p>k</p><p>b<sup style="top: -0.3012em;">2 </sup></p><p>c</p><p>a<sup style="top: -0.3012em;">2 </sup></p><p>t<sup style="top: -0.3012em;">k </sup></p><p></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li><li style="flex:1">ln </li></ul><p></p><p>E<sub style="top: 0.1246em;">j</sub>(a, b, c) <br>.</p><p></p><ul style="display: flex;"><li style="flex:1">j</li><li style="flex:1">c</li></ul><p></p><p>k! </p><p></p><ul style="display: flex;"><li style="flex:1">j=0 </li><li style="flex:1">k=0 </li></ul><p></p><p>Equating coefficients of t<sup style="top: -0.3012em;">k </sup>in (3.8) gives us </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><p>ꢀ ꢁ ꢀ </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">k−j </li><li style="flex:1">k−j </li></ul><p></p><p>kj</p><p>b<sup style="top: -0.3013em;">2 </sup></p><p>c</p><p>a<sup style="top: -0.3013em;">2 </sup></p><p>X</p><p></p><ul style="display: flex;"><li style="flex:1">ln </li><li style="flex:1">+</li><li style="flex:1">ln </li></ul><p></p><p>E<sub style="top: 0.1246em;">j</sub>(a, b, c) = 0. </p><p>(3.9) </p><p>c</p><p>j=0 </p><p>Formula (3.5) follows. <br>The rest formulae follow from Definition 2.1 and formula (3.2). </p><p>ꢀ</p><p>Remark 3.1. For positive numbers a, b, and c, we have the following </p><p>E<sub style="top: 0.1246em;">0</sub>(a, b, c) = 1, E<sub style="top: 0.1245em;">1</sub>(a, b, c) = ln c − ln a − ln b, </p><p>(3.10) <br>E<sub style="top: 0.1245em;">2</sub>(a, b, c) = (ln c − 2 ln a)(ln c − 2 ln b), </p><p>E<sub style="top: 0.1246em;">3</sub>(a, b, c) = [(ln c − ln a − ln b)<sup style="top: -0.3427em;">2 </sup>− 3(ln b − ln a)<sup style="top: -0.3427em;">2</sup>](ln c − ln a − ln b). </p><p></p><ul style="display: flex;"><li style="flex:1">4</li><li style="flex:1">Q.-M. LUO AND F. QI </li></ul><p></p><p>4. Some properties of the generalized Euler polynomials </p><p>In this section, we will investigate properties of the generalized Euler polynomials defined by Definition 2.2. </p><p>Theorem 4.1. For any given positive numbers a, b, c and x ∈ R, we have </p><p>ꢀ ꢁ </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>kk−j </p><p>X</p><p>k</p><p></p><ul style="display: flex;"><li style="flex:1">(ln c)<sup style="top: -0.3013em;">k−j </sup></li><li style="flex:1">1</li></ul><p>2</p><p>E<sub style="top: 0.1246em;">k</sub>(x; a, b, c) = E<sub style="top: 0.1245em;">k</sub>(x; a, b, c) = E<sub style="top: 0.1246em;">k</sub>(x; a, b, c) = x − <br>E<sub style="top: 0.1246em;">j</sub>(a, b, c), </p><p>(4.1) </p><p>j</p><p>2<sup style="top: -0.2398em;">j </sup></p><p>j=0 </p><p>ꢀ ꢁ </p><p>ꢀ</p><p>ꢁ ꢀ </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">j</li><li style="flex:1">k−j </li></ul><p></p><p>X</p><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">b</li></ul><p></p><p>12ln c − 2 ln a <br>(ln c)<sup style="top: -0.3428em;">k−j </sup>ln </p><p>x − </p><p>E<sub style="top: 0.1245em;">j </sub></p><p>, (4.2) </p><p></p><ul style="display: flex;"><li style="flex:1">j</li><li style="flex:1">a</li></ul><p></p><p>2(ln b − ln a) </p><p>j=0 </p><p>ꢀ ꢁꢀ ꢁ </p><p></p><ul style="display: flex;"><li style="flex:1">ꢆ</li><li style="flex:1">ꢇ</li><li style="flex:1">ꢆ</li><li style="flex:1">ꢇ</li></ul><p></p><p>j</p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">`</li><li style="flex:1">k−j </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">h</li><li style="flex:1">i</li></ul><p></p><p>(ln c)<sup style="top: -0.3013em;">k−j </sup></p><p></p><ul style="display: flex;"><li style="flex:1">b</li><li style="flex:1">c</li></ul><p></p><p>12</p><p>X X </p><p>j−` </p><p>kjj`</p><p></p><ul style="display: flex;"><li style="flex:1">ln </li><li style="flex:1">ln </li></ul><p></p><p>x − </p><p>E<sub style="top: 0.1246em;">`</sub>, (4.3) </p><p>2<sup style="top: -0.2398em;">j </sup></p><p></p><ul style="display: flex;"><li style="flex:1">a</li><li style="flex:1">ab </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">j=0 </li><li style="flex:1">`=0 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>12</p><p></p><ul style="display: flex;"><li style="flex:1">E<sub style="top: 0.1246em;">k</sub>(a, b, c) = 2<sup style="top: -0.3428em;">k</sup>E<sub style="top: 0.1246em;">k </sub></li><li style="flex:1">; a, b, c </li></ul><p>,</p><p>(4.4) (4.5) </p><p>E<sub style="top: 0.1245em;">k</sub>(x) = E<sub style="top: 0.1245em;">k</sub>(x; 1, e, e). </p><p>Proof. By Definition 2.1 and Definition 2.2, we have </p><p>∞</p><p>2c<sup style="top: -0.3013em;">2xt </sup>b<sup style="top: -0.2398em;">2t </sup>+ a<sup style="top: -0.2398em;">2t </sup>t<sup style="top: -0.3013em;">k </sup></p><p>X</p><p>=</p><p>2<sup style="top: -0.3428em;">k</sup>E<sub style="top: 0.1246em;">k</sub>(x; a, b, c) </p><p>(4.6) (4.7) k! </p><p>k=0 </p><p>and </p><p></p><ul style="display: flex;"><li style="flex:1">2c<sup style="top: -0.3013em;">2xt </sup></li><li style="flex:1">2c<sup style="top: -0.3013em;">t </sup></li></ul><p></p><p>==</p><p>· c<sup style="top: -0.3428em;">(2x−1)t </sup></p><p></p><ul style="display: flex;"><li style="flex:1">b<sup style="top: -0.2399em;">2t </sup>+ a<sup style="top: -0.2399em;">2t </sup></li><li style="flex:1">b<sup style="top: -0.2399em;">2t </sup>+ a<sup style="top: -0.2399em;">2t </sup></li></ul><p></p><p> </p><p>! </p><p>!</p><p></p><ul style="display: flex;"><li style="flex:1">∞</li><li style="flex:1">∞</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">k</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">X</li><li style="flex:1">X</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">t</li><li style="flex:1">t</li></ul><p>E<sub style="top: 0.1246em;">k</sub>(a, b, c) </p><p>(2x − 1)<sup style="top: -0.3427em;">k</sup>(ln c)<sup style="top: -0.3427em;">k </sup></p><ul style="display: flex;"><li style="flex:1">k! </li><li style="flex:1">k! </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">k=0 </li><li style="flex:1">k=0 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>ꢀ ꢁ </p><p>∞</p><p>k</p><p>kj</p><p>t<sup style="top: -0.3012em;">k </sup></p><p>.</p><p></p><ul style="display: flex;"><li style="flex:1">X</li><li style="flex:1">X</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">(ln c)<sup style="top: -0.3427em;">k−j</sup>(2x − 1)<sup style="top: -0.3427em;">k−j</sup>E<sub style="top: 0.1246em;">j</sub>(a, b, c) </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>k! </p><p></p><ul style="display: flex;"><li style="flex:1">j=0 </li><li style="flex:1">k=0 </li></ul><p></p><p>t<sup style="top: -0.2505em;">k </sup></p><p>k! </p><p></p><ul style="display: flex;"><li style="flex:1">Equating the coefficients of </li><li style="flex:1">in (4.6) and (4.7) yields </li></ul><p></p><p>ꢀ ꢁ </p><p>k</p><p>X</p><p>k</p><ul style="display: flex;"><li style="flex:1">2<sup style="top: -0.3428em;">k</sup>E<sub style="top: 0.1245em;">k</sub>(x; a, b, c) = </li><li style="flex:1">(ln c)<sup style="top: -0.3427em;">k−j</sup>(2x − 1)<sup style="top: -0.3427em;">k−j</sup>E<sub style="top: 0.1246em;">j</sub>(a, b, c). </li></ul><p>j</p><p>j=0 </p><p>Formula (4.1) follows. <br>The rest formulae follow directly from substituting formulae (3.2) and (3.3) into </p><p>12</p><p>(4.1) and taking x = in (4.1), respectively. </p><p>ꢀ</p><p></p><ul style="display: flex;"><li style="flex:1">GENERALIZATIONS OF EULER NUMBERS AND POLYNOMIALS </li><li style="flex:1">5</li></ul><p></p><p>Theorem 4.2. For positive integer 1 ≤ p ≤ k, we have </p><p>p</p><p>∂</p><p>k! </p><p></p><ul style="display: flex;"><li style="flex:1">E<sub style="top: 0.1246em;">k</sub>(x; a, b, c) = </li><li style="flex:1">(ln c)<sup style="top: -0.3428em;">p</sup>E<sub style="top: 0.1246em;">k−p</sub>(x; a, b, c), </li></ul><p></p><p>(4.8) (4.9) </p><p>∂x<sup style="top: -0.2398em;">p </sup></p><p>(k − p)! </p><p>Z</p><p>x</p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">E<sub style="top: 0.1245em;">k</sub>(t; a, b, c)dt = </li><li style="flex:1">[E<sub style="top: 0.1245em;">k+1</sub>(x; a, b, c) − E<sub style="top: 0.1245em;">k+1</sub>(β; a, b, c)] . </li></ul><p></p><p>(k + 1) ln c </p><p>β</p><p>Proof. Differentiating on both sides of formula (4.1) yields </p><p>∂<br>E<sub style="top: 0.1246em;">k</sub>(x; a, b, c) = k(ln c)E<sub style="top: 0.1246em;">k−1</sub>(x; a, b, c). </p><p>(4.10) </p><p>∂x </p><p>Using formula (4.10) and by mathematical induction, the formulae (4.8) follows. Rearranging formula (4.10) produces </p><p>1</p><p>∂</p><ul style="display: flex;"><li style="flex:1">E<sub style="top: 0.1246em;">k</sub>(x; a, b, c) = </li><li style="flex:1">E<sub style="top: 0.1246em;">k+1</sub>(x; a, b, c). </li></ul><p></p><p>(4.11) <br>(k + 1) ln c ∂x </p><p>Formula (4.9) follows from integrating on both sides of formula (4.11). </p><p>ꢀ</p><p>Theorem 4.3. For positive numbers a, b, c and x ∈ R, we have </p><p>ꢀ ꢁ </p><p>k</p><p>X</p><p>k</p><ul style="display: flex;"><li style="flex:1">E<sub style="top: 0.1246em;">k</sub>(x + 1; a, b, c) = </li><li style="flex:1">(ln c)<sup style="top: -0.3427em;">k−j</sup>E<sub style="top: 0.1246em;">j</sub>(x; a, b, c), </li></ul><p></p><p>(4.12) </p><p>j</p><p>j=0 </p><p>E<sub style="top: 0.1245em;">k</sub>(x + 1; a, b, c) = 2x<sup style="top: -0.3428em;">k</sup>(ln c)<sup style="top: -0.3428em;">k </sup></p><p>ꢀ ꢁ </p><p>k</p><p>(4.13) (4.14) </p><p>X</p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p>kj</p><p></p><ul style="display: flex;"><li style="flex:1">+</li><li style="flex:1">(ln c)<sup style="top: -0.3428em;">k−j </sup>− (ln b)<sup style="top: -0.3428em;">k−j </sup>− (ln a)<sup style="top: -0.3428em;">k−j </sup>E<sub style="top: 0.1246em;">j</sub>(x; a, b, c), </li></ul><p></p><p>j=0 </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>a b <br>E<sub style="top: 0.1245em;">k</sub>(x + 1; a, b, c) = E<sub style="top: 0.1245em;">k </sub>x; , , c <br>.</p><p>c c </p><p>Proof. From Definition 2.2 and straightforward calculation, we have </p><p>"</p><p># " </p><p>#</p><p></p><ul style="display: flex;"><li style="flex:1">∞</li><li style="flex:1">∞</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">k</li></ul><p></p><p>2c<sup style="top: -0.3012em;">xt </sup>b<sup style="top: -0.2398em;">t </sup>+ a<sup style="top: -0.2398em;">t </sup></p><p></p><ul style="display: flex;"><li style="flex:1">t</li><li style="flex:1">t</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">X</li><li style="flex:1">X</li></ul><p></p><p>· c<sup style="top: -0.3428em;">t </sup>= </p><p>E<sub style="top: 0.1245em;">k</sub>(x; a, b, c) </p><p>(ln c)<sup style="top: -0.3428em;">k </sup></p><ul style="display: flex;"><li style="flex:1">k! </li><li style="flex:1">k! </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">k=0 </li><li style="flex:1">k=0 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>(4.15) </p><p>ꢀ ꢁ </p><p>∞</p><p>k</p><p>X X </p><p>kj</p><p>t<sup style="top: -0.3013em;">k </sup></p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">(ln c)<sup style="top: -0.3428em;">k−j</sup>E<sub style="top: 0.1245em;">j</sub>(x; a, b, c) </li></ul><p>k! </p><p></p><ul style="display: flex;"><li style="flex:1">j=0 </li><li style="flex:1">k=0 </li></ul><p></p><p>and </p><p>∞</p><p>k</p><p>2c<sup style="top: -0.3012em;">xt </sup></p><p>2c<sup style="top: -0.3012em;">(x+1)t </sup></p><p>t</p><p>X</p><p>· c<sup style="top: -0.3428em;">t </sup>= </p><p>=</p><p>E<sub style="top: 0.1245em;">k</sub>(x + 1; a, b, c). </p><p>(4.16) </p><p></p><ul style="display: flex;"><li style="flex:1">b<sup style="top: -0.2398em;">t </sup>+ a<sup style="top: -0.2398em;">t </sup></li><li style="flex:1">b<sup style="top: -0.2398em;">t </sup>+ a<sup style="top: -0.2398em;">t </sup></li></ul><p></p><p>k! </p><p>k=0 </p><p>t<sup style="top: -0.2506em;">k </sup></p><p>k! </p><p>Therefore, from equating the coefficients of follows. in (4.15) and (4.16), formula (4.12) </p><p></p><ul style="display: flex;"><li style="flex:1">6</li><li style="flex:1">Q.-M. LUO AND F. QI </li></ul><p></p><p>Similarly, we obtain </p><p>∞</p><p>k</p><p>2c<sup style="top: -0.3013em;">(x+1)t </sup></p><p>t</p><p>2c<sup style="top: -0.3013em;">xt </sup></p><p>X</p><p>=</p><p>E<sub style="top: 0.1245em;">k</sub>(x + 1; a, b, c) = 2c<sup style="top: -0.3428em;">xt </sup></p><p>+</p><p>(c<sup style="top: -0.3428em;">t </sup>− b<sup style="top: -0.3428em;">t </sup>− a<sup style="top: -0.3428em;">t</sup>) b<sup style="top: -0.2398em;">t </sup>+ a<sup style="top: -0.2398em;">t </sup></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages8 Page
-
File Size-