Engineering Design Evolution of the JT-60SA Project

Engineering Design Evolution of the JT-60SA Project

<p>Engineering Design Evolution of the JT-60SA Project </p><p>P. Barabaschi, Y. Kamada, S. Ishida for the JT-60SA Integrated Project Team <br>EU: F4E-CEA-ENEA-CNR/RFX-KIT-CRPP-CIEMAT-SCKCEN <br>JA: JAEA </p><p>1</p><p>JT-60SA Objectives </p><p>•A combined project of the ITER Satellite Tokamak Program of JA-EU </p><p>(Broader Approach) and National Centralized Tokamak Program in Japan. </p><p>•Contribute to the early realization of fusion energy by its exploitation to support the exploitation of ITER and research towards DEMO. </p><p>ITER </p><p>DEMO </p><p>Complement ITER towards DEMO <br>Support ITER </p><p>JT-60SA </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li><li style="flex:1">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</li></ul><p></p><p>The New Load Assembly </p><p>••</p><p>JT60-U: Copper Coils (1600 T), Ip=4MA, Vp=80m<sup style="top: -0.58em;">3 </sup>JT60-SA: SC Coils (400 T), Ip=5.5MA, Vp=135m<sup style="top: -0.58em;">3 </sup></p><p>JT-60U JT-60SA </p><p>JT-60SA(A≥2.5,Ip=5.5 MA) </p><p>ITER (A=3.1,15 MA) <br>3.0m </p><p>6.2m </p><p>~4m <br>~2.5m </p><p>1.8m </p><p>KSTAR (A=3.6, 2 MA) </p><p>1.7m </p><p>EAST (A=4.25,1 MA) </p><p>1.1m </p><p>3</p><p>SST-1 (A=5.5, 0.22 MA) </p><p>3</p><p>High Beta and Long Pulse </p><p>• JT-60SA is a fully superconducting tokamak capable of confining break- </p><p>max </p><p>even equivalent class high-temperature deuterium plasmas (I<sub style="top: 0.42em;">p </sub>=5.5 MA) lasting for a duration (typically 100s) longer than the timescales characterizing the key plasma processes, such as current diffusion and particle recycling. <br>• JT-60SA should pursue full non-inductive steady-state operations with high β<sub style="top: 0.42em;">N </sub>(&gt; no-wall ideal MHD stability limits). </p><p>4</p><p>4</p><p>Plasma Shaping </p><p>• JT-60SA will explore the plasma configuration optimization for ITER and DEMO with a wide range of the plasma shape including the shape of ITER, with the capability to produce both single and double null configurations. </p><p>5</p><p>5</p><p></p><ul style="display: flex;"><li style="flex:1">Ip=5.5MA, Lower Single Null </li><li style="flex:1">Ip=5.5MA, Double&nbsp;Null </li><li style="flex:1">Ip=4.6 MA ITER like </li></ul><p></p><p>Phased Research Plan </p><p>• Exploitation within the BA period will aim at the initial research phase: <br>- HH operation for plasma full commissioning - DD operation for identification of the issues in preparation for full DD operation </p><p>• Principles of “Joint Exploitation” later phases agreed between EU and JA • Detailed “Research Plan” jointly prepared </p><p>Annual Neutron <br>Limit <br>Expected Duration <br>Remote Handling <br>Max Power </p><ul style="display: flex;"><li style="flex:1">Phase </li><li style="flex:1">Divertor </li><li style="flex:1">P-NB N-NB&nbsp;ECRF </li></ul><p>1.5MW <br>Power x Time <br>1-2 y 2-3y 2-3y &gt;2y </p><ul style="display: flex;"><li style="flex:1">-</li><li style="flex:1">10MW </li></ul><p>x100s <br>23MW 33MW </p><p>phase I phase II phase I phase II </p><p>HDDDD</p><p>Initial <br>Research Phase <br>LSN partial monoblock <br>+<br>1.5MW x5s <br>NB: 20MW x 100s <br>30MW x 60s duty = 1/30 <br>4E19 4E20 1E21 <br>R&amp;D <br>Perp. <br>13MW <br>10MW <br>Tang. 7MW <br>Integrated Research Phase <br>LSN full- <br>ECRF: 100s <br>37MW </p><p>41MW monoblock <br>7MW </p><p>Use <br>Extended </p><p>Research <br>Phase </p><ul style="display: flex;"><li style="flex:1">&gt;5y </li><li style="flex:1">1.5E21 </li><li style="flex:1">DN </li><li style="flex:1">24MW </li><li style="flex:1">41MW x 100s </li></ul><p></p><p>6</p><p>Baseline Schedule </p><p>-Start of Tokamak Assembly: </p><p>Early 2012 </p><p>-Completion of Tokamak Assembly: October&nbsp;2015 </p><p>-First Plasma: Mid&nbsp;2016. </p><p>7</p><p>Device re-baselining </p><p>• In late 2007, cost concerns prompted the Parties to request a re-design of the device. <br>• Several ways to reduce costs were found in “old” design: </p><p>• Issues found: </p><p>ꢀ</p><p>Maximum field in TF conductor rather large for cost effective [email protected] design (Operation point : 6.5T at 5K, with 1K temperature margin). Conductor hot spot temp was unnecessarily low Structures rather heavy and complex to fabricate – multiple coil types Nuclear heating too conservatively estimated </p><p>ꢀꢀꢀꢀ</p><p>…</p><p>• Solution: </p><p>ꢀꢀꢀ</p><p>Reduce TF field, decrease SC strands volume (segregation), decrease Cu section Optimise structural design Recover plasma performance lost by field reduction by plasma volume increase made possible by reduction of magnet size Rationalise requirements and ports </p><p>ꢀ</p><p>• In parallel some other problems were addressed: </p><p>ꢀꢀꢀ</p><p>Seismic Loads to be managed by supports Peak TF Ripple in Plasma to be reduced to 0.5% Inductive flux for plasma operation to be increased to reach 100s flattop </p><p>8</p><p>Design at &gt;6T costly for NbTi (when Tcs~6K) </p><p>T=6K </p><p>T=5K </p><p>9</p><p>Aspect Ratio Optimised </p><p>•</p><p>R/a is the real only free parameter in the design of a Tokamak for a given </p><p>nTτ </p><p>••</p><p>Trade-off between volume and power density R/a determines important engineering factors </p><p>ꢀꢀꢀꢀꢀ</p><p>Access to In-Vessel Components Wall power density Field and technology of magnets Mechanical loads Controllability of plasma shape </p><p>•</p><p>Optimum A is largely a function of technology, machine size, and scaling laws </p><p></p><ul style="display: flex;"><li style="flex:1">The Toroidal Field, and the density </li><li style="flex:1">increase with Aspect Ratio </li></ul><p></p><ul style="display: flex;"><li style="flex:1">decrease with Aspect Ratio </li><li style="flex:1">The Plasma volume the Plasma Current, and </li></ul><p></p><p>τ</p><p>E</p><p>10 </p><p>Main Results of re-Design on TF Magnet </p><p>2007 Design </p><p>NEW <br>IDR </p><p>CDR 2007 </p><p>2008 <br>TF Total TF Energy [GJ] TF coils&nbsp;# </p><p>1.51 </p><p>1.06 <br>18 <br>TF Tension&nbsp;[MN] </p><p>Number of turns in 1 coil </p><p>Peak Field [T] </p><p>6.80 </p><p>90 </p><p>4.70 </p><p>72 </p><p>6.43 30.0 </p><p>5.65 </p><ul style="display: flex;"><li style="flex:1">24.4 </li><li style="flex:1">Total length of conductor [km] </li></ul><p></p><p>Total Structure Mass [ton] </p><p>Strand type </p><p>~650 </p><p>~280 </p><p>NbTi <br>Conductor current [kA] Cable space dimensions [mm] N SC Strands </p><p>25.3 </p><p>25.7 </p><p>18x22 </p><p>324 </p><p>25.1x25.1 </p><p>720 <br>-</p><p></p><ul style="display: flex;"><li style="flex:1">N Cu Strands </li><li style="flex:1">162 </li></ul><p>Tmarg (after&nbsp;burn) [K] </p><p>~1.1 </p><p>~1.4 </p><p>SC Strand mass in windings of 18 </p><p>New Design </p><p></p><ul style="display: flex;"><li style="flex:1">92 </li><li style="flex:1">34 </li></ul><p>coils [ton] </p><p>Segregated copper mass in 18 coils [ton] </p><p>-</p><p>14 </p><p>11 </p><p>Main Results of re-Design </p><p>Additional Design Changes: •Cryoplant: heat load re-assessed based on new operation scenarios with reduced neutron yield and reduction of magnet cold structure. From 16kW to ~10kW and much improved dynamics •Cryostat: Single Wall with simplified geometry •Vacuum Vessel: Better distribute VV ports to provide a simpler out of plane support to the TF magnet structure. Reduction of shells </p><p>•PF system: </p><p>•Balance the distribution of turns in the EF system, •6 Coils (Vs 7), •Broader betap-li range, •28% less conductor •4 Independent CS coils (Vs 3) <br>•TF Ripple Lowered: with Ferritic Insert will be &lt;0.5% </p><p>•Inductive Flux Increased: to ensure 100s flattop </p><p>12 </p><p>Machine Parameters </p><p>• After successful completion of the re-baselining in late 2008, the JT-60SA project was launched with the new design with the following parameters. </p><p>Cryostat </p><p>Basic machine parameters </p><p>P-NBI <br>P-NBI </p><p>Plasma Current Toroidal Field, B<sub style="top: 0.17em;">t </sub>Major Radius, R<sub style="top: 0.17em;">p </sub>Minor Radius, a Elongation, κ<sub style="top: 0.17em;">X </sub>Triangularity, δ<sub style="top: 0.17em;">X </sub>Aspect Ratio, A <br>Shape Parameter, S Safety Factor, q<sub style="top: 0.17em;">95 </sub>Flattop Duration <br>Heating &amp; CD Power <br>N-NBI <br>5.5 MA 2.25 T <br>2.96 </p><p>ECH </p><p>1.18 1.95 0.53 </p><p>N-NBI </p><p>2.5 6.7 ~3 <br>100 s <br>41 MW 10 MW 24 MW <br>7 MW <br>15 MW/m<sup style="top: -0.5em;">2 </sup><br>P-NBI ECRF <br>Divertor wall load </p><p>13 </p><p>13 </p><p>Heating and CD Systems </p><p>Variety of heating/current-drive/ momentum-input combinations </p><p>NB: 34MWx100s </p><p>Positive-ion-source NB 85keV 12units x 2MW=24MW </p><p>COx2u, 4MW CTRx2u, 4MW </p><p>Perpx8u, 16MW </p><p>Negative-ion-source NB 500keV, 10MW for off-axis NBCD </p><p>ECRF: 110GHz, 7MW x 100s </p><p>9 Gyrotrons, 4 Launchers with movable mirror </p><p>14 </p><p>14 </p><p>Magnet </p><p>•</p><p>All SC Magnet </p><p>ꢀ</p><p>Nb3Sn for CS </p><p>ꢀ</p><p>NbTi for TF, EF </p><p>•••</p><p>18 TF Coils 6 EF Coils 4 CS independent modules </p><p>15 </p><p>Conductors </p><p>Coil </p><p>Type of strands </p><p>TF </p><p>N<sub style="top: 0.33em;">b</sub>T<sub style="top: 0.33em;">i </sub></p><p>CS </p><p>Nb<sub style="top: 0.33em;">3</sub>S<sub style="top: 0.33em;">n </sub>20 ~9 <br>Operating current (kA) Nominal peak field (T) Operating temperature (K) Number of SC strands/Cu strands Local void fraction (%) Cable dimensions (mm) Central hole (id x od) (mm) Conductor ext. dimensions (mm) <br>25.7 5.65 &lt;5K 324 / 162 32 <br>&lt;5.1K 216 / 108 34 </p><p>TFC conductor </p><p>18.0 x 22.0 -22.0 x 26.0 <br>Φ21.0 7 x 9 27.9 x 27.9 </p><p>Conductor type </p><p>No. of&nbsp;coils Type of strand </p><p>EF-H </p><p>EF3, 4 </p><p>N<sub style="top: 0.33em;">b</sub>T<sub style="top: 0.33em;">i </sub></p><p>20.0 6.2 </p><p>EF-L </p><p>EF1, 2, 5, 6 </p><p>←</p><p>CS conductor </p><p>Operating current (kA) Nominal peak field (T) Operating temperature (K) Number of SC/Cu strands Local void fraction (%) Cable dimensions (mm) Central hole (id x od) (mm) Conductor ex. dimensions (mm) </p><p>←</p><p>4.8 </p><ul style="display: flex;"><li style="flex:1">4.8 </li><li style="flex:1">5.0 </li></ul><p>450 / 0 34 <br>216 / 108 34 <br>21.8 7 x 9 27.7 <br>19.1 </p><p>←</p><p>EF-L&amp;H conductor </p><p>16 </p><p>25.0 </p><p>16 </p><p>TF Magnet features </p><p>TF winding pack </p><p>Connections area </p><p>• Cable in Conduit Conductor , 72 turns, 25.7kA each </p><p>OIS </p><p>• 6 double pancakes, 6 turns/pancake. Helium inlets in high field side – joints in external low field side </p><p>EF1 hanging support arm </p><p>• Windings enclosed in Steel Casings • Steel casings supported to ground vertically and toroidally - connected in inboard curved regions by “Inner Intercoil Structure” </p><p>• Steel casings guided toroidally by “Outer Intercoil <br>Structure” to support out of plane loads. </p><p>EF support pedestals </p><p>Gravity support </p><p>Reinforcement ribs </p><p>17 </p><p>View of Magnet - assembly </p><p>18 </p><p>TFC Cold Tests </p><p>•••</p><p>All TFC will be cold&nbsp;tested at full current before shipping to Japan Test Facility will be in CEA-Saclay PA prepared with test facility specifications and cold testing specifications </p><p>ꢀ HV Tests ꢀ Leak Tests ꢀ Flow, Pressure Drop ꢀ Dimensional Stability during and after cooldown ꢀ Resistance, Joints ꢀ Tmargin, Quench tests (2 coils) </p><p>••</p><p>Cryostat and jigs being fabricated. Cryostat to be delivered in Saclay in first half 2011 </p><p>19 </p><p>Power Supplies </p><p>•</p><p>Largely a full new set of Power Supplies compatible with long pulse operation have been designed and will be procured. These will include: </p><p>•</p><p>TFC, grouped in 3 units of 6 coils </p><p>ꢀ 6 pulse unidirectional, 26kA, 80V ꢀ 3 Fast Discharge QPC Units (1.5KV to ground) </p><p>•</p><p>PFC, each coil with: </p><p>ꢀ 12 pulse, 20kA, ~1KV ꢀ Booster (old units) or new Switching Network Unit ꢀ Fast Discharge QPC Unit </p><p>•</p><p>In-vessel Coils </p><p>••</p><p>QPC Units: Under final tendering phase SCM-PS: </p><p>ꢀ Technical Specs completed, ꢀ Procurement Arrangement in final stage </p><p>20 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us