Inductive Learning of Phonotactic Patterns

Inductive Learning of Phonotactic Patterns

University of California Los Angeles Inductive Learning of Phonotactic Patterns A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Linguistics by Jeffrey Nicholas Heinz 2007 c Copyright by Jeffrey Nicholas Heinz 2007 The dissertation of Jeffrey Nicholas Heinz is approved. Bruce Hayes D. Stott Parker Colin Wilson Kie Zuraw, Committee Co-chair Edward P. Stabler, Committee Co-chair University of California, Los Angeles 2007 ii To Mika iii Table of Contents 1 Introduction ................................. 1 1 Thesis .................................. 1 1.1 LocalityandLearning ..................... 2 1.2 FactoringtheLearningProblem . 4 2 Other Approaches to Phonotactic Learning . 5 2.1 Learning with Principles and Parameters . 7 2.2 Learning with Optimality Theory . 8 2.3 Learning with Connectionist Models . 10 2.4 LearningwithStatisticalModels . 11 2.5 LocalSummary......................... 12 3 Overview................................. 12 Appendices ................................. 16 A–1 MathematicalPreliminaries . 16 A–1.1 Sets ............................... 16 A–1.2 RelationsandPartiallyOrderedSets . 17 A–1.3 Equivalence Relations and Partitions . 18 A–1.4 Functions and Sequences . 18 A–1.5 StringsandFormalLanguages . 20 2 Establishing the Problem and Line of Inquiry ............ 22 1 Phonotactic Patterns and Phonotactic Knowledge . .. 22 iv 1.1 Patterns over Contiguous Segments . 23 1.2 Patterns over Non-contiguous Segments . 28 1.3 StressPatterns ......................... 29 1.4 Nonarbitrary Character of Phonotactic Patterns . 31 2 PhonotacticGrammars......................... 32 2.1 TheChomskyHierarchy . .. .. 33 2.2 PhonotacticPatternsasRegularSets . 34 2.3 Examples ............................ 37 2.4 LocalSummary......................... 39 3 Addressing the Learning Problem . 40 3.1 TheGoldLearningFramework . 42 3.2 The Probably-Approximately Correct (PAC) Framework . 44 3.3 SummaryofNegativeResults . 45 3.4 PositiveResults......................... 46 4 AResearchStrategy .......................... 47 5 Summary ................................ 50 Appendices ................................. 51 B–1 AFormalTreatmentoftheGoldFramework . 51 B–1.1 Definitions............................ 51 B–1.2 Any Superfinite Class is not Gold-learnable . 52 B–2 AFormalTreatmentofthePACFramework . 56 B–2.1 Definitions............................ 56 B–2.2 TheVCDimension ....................... 57 v B–2.3 The Class of Finite Languages is not PAC-learnable . .. 58 B–3 FiniteStateAcceptors . 59 B–3.1 Definition ............................ 59 B–3.2 Extending the Transition Function . 59 B–3.3 TheLanguageofanAcceptor . 60 B–3.4 BinaryOperations . 60 B–3.5 ReverseAcceptors . 61 B–3.6 Forward and Backward Deterministic Acceptors . 61 B–3.7 Relations Between Acceptors . 62 B–3.8 StrippedAcceptors . 62 B–3.9 CyclicAcceptors . .. .. 62 B–3.10 Languages and the Machines which Accept Them . 63 B–3.11TailCanonicalAcceptors. 64 B–3.12 The Myhill-Nerode Theorem . 64 B–3.13HeadCanonicalAcceptors . 66 3 Patterns over Contiguous Segments .................. 73 1 Overview................................. 73 2 N-gramGrammarsandLanguages. 74 3 Learning N-gram Languages as String Extension Learning . ... 77 4 GeneralizingbyStateMerging. 80 4.1 TheBasicIdea ......................... 80 4.2 PrefixTrees ........................... 81 4.3 StateMerging.......................... 83 vi 5 LearningN-gramLanguageswithStateMerging . 84 6 AreN-gramsAppropriateforPhonotactics? . 87 6.1 N-gramModelsCountto(n–1) . 87 6.2 Resolvable Consonant Clusters . 88 6.3 Discussion............................ 90 7 Summary ................................ 91 Appendices ................................. 92 C–1 StringExtensionGrammars . 92 C–1.1 Definitions and Properties of Lf ................ 92 C–1.2 Natural Gold-learning of Lf for Finite A ........... 95 C–2 AFormalTreatmentofN-grams. 96 C–2.1 The N-Contiguous Set Function . 96 C–2.2 N-GramGrammarsand N-gramLanguages . 97 C–2.3 PropertiesofN-gramLanguages. 98 C–2.4 ASimpleLearner . 101 C–3 AFormalTreatmentofStateMerging . 101 C–3.1 PrefixTrees ........................... 101 C–3.2 StateMerging. .. .. 102 C–3.3 TheStateMergingTheorem . 103 C–4 Learning Ln−gram viaStateMerging. 106 C–4.1 FiniteStateRepresentations . 106 C–4.2 Towards a Language-theoretic Characterization . 108 C–4.3 Learning N-gram Languages by State Merging . 109 vii C–4.4 Obtaining the Canonical FSA for a N-gram Grammar . 111 4 Patterns Over Non-contiguous Segments ............... 114 1 Overview................................. 114 2 LongDistanceAgreement . .. .. 115 2.1 KindsofLDA.......................... 116 2.2 InadequacyofN-gramModels . 120 2.3 Long Distance Agreement or Spreading? . 120 3 PrecedenceGrammars ......................... 121 3.1 TheBasicIdea ......................... 121 3.2 LearningPrecedenceLanguages . 123 3.3 LocalSummary......................... 126 4 Learning Precedence Languages by State Merging . 126 5 PropertiesofLDA ........................... 129 5.1 Phonetically Unnatural LDA Patterns . 131 5.2 DistanceEffects......................... 132 5.3 BlockingEffects......................... 133 6 Learning LDA Patterns and Patterns over Contiguous Segments . 136 7 Summary ................................ 136 Appendices ................................. 138 D–1 AFormalTreatmentofPrecedence . 138 D–1.1 PrecedenceRelationsandSets . 138 D–1.2 Precedence Grammars and Precedence Languages . 140 viii D–1.3 PropertiesofPrecedence Languages . 141 D–1.4 Learning Precedence Languages by String Extension . 144 D–2 Learning Lprec viaStateMerging . 144 D–2.1 FiniteStateRepresentation . 144 D–2.2 Towards a Language-theoretic Characterization . 146 D–2.3 Learning Precedence Languages by State Merging . 147 D–2.4 Obtaining the Canonical FSA for a Precedence Grammar . 149 D–3 Extending Precedence Grammars to Handle Local Blocking ..... 150 D–3.1 DefinitionsandExamples . 150 D–3.2 Properties of Relativized Bigram Precedence Languages. 152 D–3.3 LearningwithStringExtension . 152 5 Stress Patterns ............................... 153 1 Overview................................. 153 2 StressPatternsintheWorld’sLanguages . 154 2.1 TheStressTypology ...................... 154 2.2 SummaryoftheTypology . 164 2.3 Inadequacy of N-gram and Precedence Learners . 164 2.4 UnattestedStressPatterns. 165 3 Neighborhood-Distinctness . 165 3.1 Definition ............................ 166 3.2 Universality ........................... 168 3.3 Discussion............................ 168 4 TheLearner............................... 170 ix 4.1 TheForwardNeighborhoodLearner. 171 4.2 SuffixTrees ........................... 173 4.3 The Forward Backward Neighborhood Learner . 174 5 Discussion................................ 177 5.1 Basic Reasons Why the Forward Backward Learner Works . 177 5.2 InputSamples.......................... 178 5.3 UnlearnableUnattestedPatterns . 179 5.4 UnlearnableAttestedPatterns. 181 5.5 Addressing the Unlearnable Attested Patterns . 182 5.6 OtherPredictions........................ 185 5.7 ComparisontootherLearningModels . 186 6 Summary ................................ 189 Appendices ................................. 191 E–1 AFormalTreatmentofSuffixTrees . 191 E–2 Results of the Neighborhood Learning Study . 192 6 Deconstructing Neighborhood-distinctness .............. 203 1 Overview................................. 203 2 GeneralizingtheNeighborhood . 204 2.1 Preliminaries .......................... 204 2.2 Neighborhood-distinctness . 205 3 Subsets of Neighborhood-distinct Languages . 207 3.1 PrecedenceLanguages . 207 x 3.2 N-gramLanguages . .. .. 208 3.3 LocalSummary......................... 210 4 Neighborhood-distinctness not Preserved Under Intersection . 212 5 Towards a Compositional Analysis of Neighborhood-distinctness . 214 5.1 Strategy............................. 214 5.2 Merging States in Prefix Trees with Same Incoming Paths of Length n ............................ 215 5.3 Merging States in Suffix Trees with Same Outgoing Paths of Length n ............................ 216 5.4 Merging States in Prefix Trees with Same Outgoing Paths of Length n ............................ 216 5.5 Merging States in Suffix Trees with Same Incoming Paths of Length n ............................ 216 5.6 MergingFinalStatesinPrefixTrees . 217 5.7 MergingStartStatesinSuffixTrees. 224 5.8 MergingStartStatesinPrefixTrees . 228 5.9 MergingFinalStatesinSuffixTrees. 228 5.10 Merging Nonfinal States in Prefix Trees . 228 5.11 Merging Nonstart States in Suffix Trees . 228 5.12 Merging Nonstart States in Prefix Trees . 229 5.13 Merging Nonfinal States in Suffix Trees . 229 5.14 LocalSummary ......................... 230 6 Summary ................................ 232 xi 7 Conclusion .................................. 233 1 Results.................................. 233 2 LookingAhead ............................. 236 ⋆ Appendix: The Stress Typology .................... 239 xii List of Figures 2.1 TheChomskyHierarchy . .. .. 35 2.2 ∗CCCinYawelmaniYokuts . 38 2.3 NavajoSibilantHarmony. 38 2.4 TheStressPatternofPintupi . 39 2.5 TheLearningProcess.......................... 40 2.6 Locating Human Languages in the Chomsky Hierarchy . .. 48 2.7 Locating Phonotactic Patterns in the Regular Languages (I) .... 49 2.8 Locating Phonotactic Patterns in the Regular Languages (II). 49 2.9 A Tail-canonical Acceptor for L = {1, 10, 010, 0100, 01000,...} ... 70 2.10 A Head-canonical Acceptor for L = {1, 10, 010, 0100, 01000,...} .. 70 2.11 A Tail-canonical Acceptor for L={λ, 00, 11, 0011, 1100,

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    333 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us