Olefination Reactions Lecture Notes OTBS OPMB O

Olefination Reactions Lecture Notes OTBS OPMB O

Olefination Reactions Lecture Notes OTBS OPMB O Key Reviews: O Me O Me XX Wittig Reaction K. C. Nicolaou and co-workers, Ann. 1997, 1283. Horner-Wadsworth-Emmons and Tebbe Olefinations S. E. Kelly, Comprehensive Org. Synth. 1991, Vol. 1, 729. Peterson Olefination D. J. Ager, Synthesis 1984, 384. Julia (Julia-Lythgoe) Olefination B. M. Trost, Bull. Chem. Soc. Jpn. 1988, 61, 107. Wittig Olefination: Background and Principles R1 n-BuLi, Ph P 3 O X LDA, R R1 LiHMDS PPh + 1 3 X Ph3P + R1 Ph3P pKa = 18-20 ylide when R = alkyl, H Ph Ph Ph Ph Ph R1 P Ph P -[Ph3P=O] O R1 O R strong bond 1 formation drives reaction oxaphosphatane betaine G. Wittig and G. Schollkopf, Chem. Ber. 1954, 87, 1318. Wittig Olefination: Background and Principles Stereoselectivity with non-stabilized ylides Me OMe Me Ph3P Ph3P Ph3P Me Ph3P Ph3P Not stable; must be made in situ and used immediately Wittig Olefination: Background and Principles Stereoselectivity with non-stabilized ylides Me OMe Me Ph3P Ph3P Ph3P Me Ph3P Ph3P Not stable; must be made in situ and used immediately Addition to carbonyl is an irreversible and concerted [2+2] cycloaddition such that the R groups on the aldehyde and the ylide are as far apart as possible PPh3 Ph3P O H H H O + Me Me Ph3P R O R H -[Ph3P=O] As the size of the R groups increases, selectivity for Z-alkene increases Me Nonpolar solvents favor initial addition Polar solvents favor the elimination Z-alkene Wittig Olefination: Background and Principles Stereoselectivity with stabilized ylides Me O O Ph P Ph3P 3 Ph3P Me OEt semistabilized Incredibly stable; not moisture sensitive, can be chromatographed Price for stability is lower reactivity: reacts well with aldehydes, slowly with ketones Wittig Olefination: Background and Principles Stereoselectivity with stabilized ylides Me O O Ph P Ph3P 3 Ph3P Me OEt semistabilized Incredibly stable; not moisture sensitive, can be chromatographed Price for stability is lower reactivity: reacts well with aldehydes, slowly with ketones Initial addition to carbonyl is reversible so the thermodynamic elimination product results. O Ph P O Ph P O 3 + 3 + OEt H Ph H H EtO C H O PPh3 2 EtO2C Ph minor kinetic product major kinetic product RDS Ph3P O H H Ph EtO2C EtO C Ph EtO2C Ph 2 thermodynamically most stable; rotation possible predominant or only product Wittig Olefination: Applications in Total Synthesis O OH 1. Ph2P=CH2, HO THF, -10 °C Me OH 2. AD-mix-β, HO HO H2N Me MeO OMe MeO OMe t-BuOH/H2O O OH (84% overall) O O (96% ee) O Cl Wittig reaction O O HO Cl OH O O O H H H H N N N N N N Me O H H N O H O Me 1. PCC, CH2Cl2 N NH N 2. Ph P=CH , O NH2 N 3 2 N Me THF, -20 °C N HO2C Br Br OH Br Br OH (86% overall) HO Wittig reaction vancomycin HO K. C. Nicolaou and co-workers, Angew. Chem. Int. Ed. 1998, 37, 2708. Wittig Olefination: Applications in Total Synthesis BnO OTBDPS OTBDPS BnO PPh3 I BnO PPh3 I BnO BnO O O 1. TBAF BnO O BnO O BnO O 2. I2, PPh3 BnO OBn BnO 3. PPh3 BnOBnO BnOBnO nBuLi, THF, BnO O BnO BnO O HMPA, O -20 °C, 4 h BnO BnO (87%) BnO BnOBnO OMe Wittig reaction BnO O BnO O BnO BnO OMe OMe These researchers have made tetraoses and pentaoses via this technology A. Dondoni and co-workers, J. Org. Chem. 2002, 67, 4186. Wittig Olefination: Applications in Total Synthesis TBSO I TBSO PPh3 TBSO I OTBS Me Me Me Me Me Me Me NaHMDS; Me Me O then A PPh3 Me SEt Me Me -78 °C to rt Me Me THF Me Z/E = >49/1 Me TBSO Me Me Me (76%) Me O O Wittig O reaction Me PMP Me PMP Me PMP O O O PMP = p-methoxyphenyl O Me Me Me Me OTBS HO Me O O HO OH O O Me SEt Me Me Me O OH NH2 TBSO Me (+)-discodermolide A A. B. Smith and co-workers, J. Am. Chem. Soc. 2000, 122, 8654. Wittig Olefination: Applications in Total Synthesis Me O Me OMe Me Me OMe OMe OMe OH PPh3Br n-BuLi TBSO Me TBSO Me H Me H H OMe 0 → 25 °C OMe Me O Me Me (97%) Me H (3:1 E/Z) Me O Wittig reaction with colombiasin A semistabilized ylide K. C. Nicolaou and co-workers, Angew. Chem. Int. Ed. 2001, 40, 2482. M. D. Shair and co-workers, J. Am. Chem. Soc. 2002, 124, 773. Wittig Olefination: Applications in Total Synthesis Me O Me OMe Me Me OMe OMe OMe OH PPh3Br n-BuLi TBSO Me TBSO Me H Me H H OMe 0 → 25 °C OMe Me O Me Me (97%) Me H (3:1 E/Z) Me O Wittig reaction with colombiasin A semistabilized ylide Me Me MeO OTBS OH 1. Dess-Martin [O] TIPS 2. Me , THF TIPS I Ph P I 3 O (47% overall) Wittig reaction fragment for longithorone A K. C. Nicolaou and co-workers, Angew. Chem. Int. Ed. 2001, 40, 2482. M. D. Shair and co-workers, J. Am. Chem. Soc. 2002, 124, 773. Wittig Olefination: Applications in Total Synthesis Me Me H OTBS Me H O OTMS EtS H Me H Me H O O O + EtS O O O PPh I H H Me 3 O O O O H H H H OTPS H H H Me n-BuLi, HMPA, THF, -78 °C (75%) Wittig reaction TBSO Me H Me Me H EtS O Me H O OTMS OTPS H Me H O O EtS O O H O O H H H Me H O O H H H H Me HO Me Me O H H O O Me H Me H Me O O O H H O O H O H O O O H H H H H H O H Me Me brevetoxin B K. C. Nicolaou and co-workers, J. Am. Chem. Soc. 1995, 117, 1171. For a review, see: Classics in Total Synthesis I, Chapter 37. Wittig Olefination: Applications in Total Synthesis OTBDPS 1. DIBAL-H, THF, OTBDPS OTBDPS 1. Ph3P, DEAD, -78 °C, 5 h (PhO)2P(O)N3 2. OMe Ph3P , OH 2. 5 N HCl, THF/ N3 CH Cl (1:4) O O THF, 0 °C MeO 2 2 O (75% overall) (74% overall) Wittig Reaction This chain extension technique is usually + good yielding as long as the molecule is acid stable OMe OMe OMe THF, N -78 °C HO N3 (70%) OH OTBDPS H N N N (−)-quinine G. Stork and co-workers, J. Am. Chem. Soc. 2001, 123, 3239. Wittig Olefination: Applications in Total Synthesis Me Me O , CH Cl / H Me O 3 2 2 Me O O Ph3P Me O H MeOH (3:1), O -78 °C, 10 min; H toluene, O 110 °C, 3 h OMe Me2S, 20 °C, 16 h OMe OMe (98%) (84%) OMe Wittig reaction Me O Me Me HO HO OH Me Me O Me OMe O HO O O OH O MeO Me O Me Me HO OH OH Me Me O Me swinholide A OMe I. Paterson and co-workers, Tetrahedron 1995, 51, 9393. Wittig Olefination: Applications in Total Synthesis O NHBoc NH2 H , 1. (Boc)2O CHO NHBoc OTBDPS OH 2. TBDPSCl (69% overall) OTBDPS Br CO2Me (91%) (12:1 ratio of PPh3 Z/E isomers) CH2Cl2, Δ Wittig reaction N N H Br Br p-TsO H H OH CO2Me N CO2Me TMSOTf, 2,6-lutidine; NHBoc NH2 N then p-TsOH H OTBDPS OTBDPS (85%) manzamine A S. F. Martin and co-workers, J. Am. Chem. Soc. 1999, 121, 866. Wittig Olefination: Background and Principles Schlösser-modified Wittig Reaction: How to Get E-products with Non-stabilized Ylides Ph P O 3 H PhLi, THF, -78 °C H + Me IPh3P Me O M. Schlösser, Angew. Chem. Int. Ed. Engl. 1966, 5, 126. Wittig Olefination: Background and Principles Schlösser-modified Wittig Reaction: How to Get E-products with Non-stabilized Ylides Ph P O 3 H PhLi, THF, -78 °C H + Me IPh3P Me O PhLi (1 equiv), -30 °C, 5 min Ph3P O Ph3P O H HCl H Me Me Me H M. Schlösser, Angew. Chem. Int. Ed. Engl. 1966, 5, 126. Wittig Olefination: Applications in Total Synthesis Me O O O O PPh3I PPh Me PhLi, THF Me 3 Me + O O O O O PhLi (1 equiv); Schlösser- then MeOH, -30 °C modified (97:3 trans:cis) Wittig reaction Me O Me Me Me H O O Me H Me H H O O O progesterone W. S. Johnson and co-workers, J. Am. Chem. Soc. 1970, 92, 741. For a review, see: Classics in Total Synthesis I, Chapter 6. Wittig Olefination: Applications in Total Synthesis 1. EtPPh I/n-BuLi; OMe 3 O3, n-BuLi; acid O MeOH MeO 2. p-TsOH, acetone O Me (98%) (65% overall) Schlösser-modified Wittig reaction O O H O HO O OH Me O O O Me O O O O O O Me Me COOH COOH CP-225,917 (phomoidride A) CP-263,114 (phomoidride B) K. C. Nicolaou and co-workers, Angew. Chem. Int. Ed. 1999, 38, 1669. Horner-Wadsworth-Emmons Olefination: Background and Principles O O O THF, O O + -78 °C Δ + P(OR) RO PX OEt RO P OEt 3 OEt neat RO RO Cl Cl Arbuzov X = Li, K, Na reaction Horner-Wadsworth-Emmons Olefination: Background and Principles O O O THF, O O + -78 °C Δ + P(OR) RO PX OEt RO P OEt 3 OEt neat RO RO Cl Cl Arbuzov X = Li, K, Na reaction Stereoselectivity Principles: Follows general rules of stabilized ylides O O O NaH (RO) P ONa 2 + (RO)2P ONa + OEt H Ph H H EtO C H O P(OR)2 2 EtO2C Ph O minor kinetic product major kinetic product O RDS (RO)2P O H H Ph EtO2C EtO C Ph EtO2C Ph 2 thermodynamically most stable; rotation possible predominant or only product Horner-Wadsworth-Emmons Olefination: Applications in Total Synthesis Me Me OTBDPS Pd2dba3, LiCl, Me Sn i-Pr NEt, NMP, 35 °C 3 + 2 Me OAc Me Me Me Me π-Allyl Stille Reaction Me OTBDPS (single stereoisomer) O (96%) O (92% 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    65 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us