Butvar Properties and Uses

Butvar Properties and Uses

<p>Pub. No. 2008084E <br>(Supersedes 2008084D) </p><p><strong>®</strong></p><p><strong>Butvar </strong></p><p><strong>P O LY V I N Y L&nbsp;B U T Y R A L&nbsp;R E S I N&nbsp;P R O P E RT I E S&nbsp;&amp; U&nbsp;S E S </strong></p><p><strong>Coatings Performance Materials by </strong></p><p><strong>CONTENTS </strong></p><p>Introduction Properties <br>12</p><ul style="display: flex;"><li style="flex:1">Chemistry </li><li style="flex:1">2</li></ul><p></p><ul style="display: flex;"><li style="flex:1">Properties Tables </li><li style="flex:1">3</li></ul><p></p><ul style="display: flex;"><li style="flex:1">Product Types </li><li style="flex:1">6</li></ul><p>Butvar:The Right Resin Solutions Compatibility <br>6<br>13 15 15 15 16 16 16 17 17 17 17 17 <br>Insolubizing Reactions Reaction With Phenolics Reaction With Epoxies Reaction With Dialdhehydes Reaction With Isocyanates Reaction With Melamines <br>Applications <br>Wire Enamels Surface Coatings Wash Primers Military Specification Wash Primers Non-specification Wash Primers: <br>B-1030 With Butvar <br>Single Package Wash Primer: <br>B-1011 With Butvar <br>Chromate-free Wash Primers With Butvar Metal Coatings <br>18 18 19 20 21 21 21 22 22 22 22 23 23 23 24 24 24 25 26 26 27 28 28 28 28 <br>Wood Finishes <br>Protective Wash Coats and Sealers Knot Sealers <br>Adhesives <br>Structural Adhesives Phenolic Resins Epoxies and Other Thermosetting Resins High-strength Bonding Procedure Performance Characteristics Adhesive Strengths Hot Melt Adhesives <br>Textile Coatings Advantages as Textile Coating Ceramic Binder Applications Tape Casting Thick Films Toners and Printing Inks <br>Storage and Handling <br>Storage Toxicity and FDA Status Quality Control <br>Material Sources Worldwide Sales Offices <br>Inside Back Cover <br>Back Cover </p><p><strong>INTRODUCTION </strong></p><p>olyvinyl butyral resins are employed in a wide array of industrial and commercial applications. These unique resins offer impressive performance, </p><p><strong>USES </strong></p><p>Some of the applications in which Butvar is a vital ingredient include: </p><p><strong>P</strong></p><p>as well as outstanding versatility. <br>ꢀ Ceramic binders </p><p>ꢀ Inks/dry toners ꢀ Wood coatings </p><p>®</p><p>Butvar polyvinyl&nbsp;butyral resins have a combination of properties that make them a key ingredient in a variety of successful formulations. Some of these properties for which Butvar is widely used are: outstanding binding efficiency, optical clarity, adhesion to a large number of surfaces, and toughness combined with flexibility. <br>ꢀ Wash primers ꢀ Composite fiber binders ꢀ Structural adhesives ꢀ Other diverse uses </p><p>Solutia offers six grades of Butvar resin that cover a broad range of chemical and physical properties.These resins are generally well suited either as a major ingredient of a formulation or in smaller quantities to enhance the properties of other resins. <br>Butvar resin was pioneered by Monsanto in the 1930s as the key ingredient for automotive safety glass interlayers. It still enjoys widespread use in automotive and architectural applications for laminated safety glass. </p><p><strong>TECHNICAL SUPPORT FOR SPECIFIC APPLICATIONS </strong></p><p>Solutia’s technical support and research staff for Butvar resins can assist in your specific application needs.The Solutia Customer Service Center at 1-800-964-5224 stands ready to receive your orders for samples and technical literature, as well as purchase orders for shipment of Butvar resin. </p><p>® Registered trademark of Solutia, Inc. </p><p></p><ul style="display: flex;"><li style="flex:1">B</li><li style="flex:1">U</li><li style="flex:1">T</li><li style="flex:1">V</li><li style="flex:1">A</li><li style="flex:1">R</li></ul><p></p><p><strong>1</strong></p><p><strong>PROPERTIES </strong></p><p>The conditions of the acetal reaction and the concentration of the particular aldehyde and polyvinyl alcohol used are closely controlled to form polymers containing predetermined proportions of hydroxyl groups, acetate groups and acetal groups.The final product may be represented by the following stylized structure: </p><p><strong>CHEMISTRY </strong></p><p>Acetals, such as polyvinyl butyral, are formed by the well-known reaction between aldehydes and alcohols. The addition of one molecule of an alcohol to one molecule of an aldehyde produces a hemiacetal. Hemiacetals are rarely isolated because of their inherent instability, but, rather, are further reacted with another molecule of alcohol to form a stable acetal. <br>The proportions of A, B and C are controlled, and they are randomly distributed along the molecule. <br>Polyvinyl acetals are prepared from aldehydes and polyvinyl alcohols. Polyvinyl alcohols are high molecular weight resins containing various percentages of hydroxyl and acetate groups produced by hydrolysis of polyvinyl acetate. </p><p>H<br>H<br>H</p><ul style="display: flex;"><li style="flex:1">R</li><li style="flex:1">C + R<sup style="top: -0.2667em;">1 </sup>OH </li><li style="flex:1">R</li><li style="flex:1">C</li><li style="flex:1">OR + R<sup style="top: -0.2667em;">1 </sup>OH </li><li style="flex:1">R</li><li style="flex:1">C( OR<sup style="top: -0.2667em;">1</sup>)<sub style="top: 0.1333em;">2 </sub>+ H<sub style="top: 0.1333em;">2</sub>O </li></ul><p></p><ul style="display: flex;"><li style="flex:1">O</li><li style="flex:1">OH </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Alcohol </strong></li><li style="flex:1"><strong>Alcohol </strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Aldehyde </strong></li><li style="flex:1"><strong>Hemiacetal </strong></li><li style="flex:1"><strong>Acetal </strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">H</li><li style="flex:1">H</li></ul><p></p><ul style="display: flex;"><li style="flex:1">H</li><li style="flex:1">CH<sub style="top: 0.1333em;">2 </sub></li></ul><p>C<br>H</p><ul style="display: flex;"><li style="flex:1">CH<sub style="top: 0.1333em;">2 </sub></li><li style="flex:1">C</li><li style="flex:1">C</li><li style="flex:1">CH<sub style="top: 0.1333em;">2 </sub></li><li style="flex:1">C</li><li style="flex:1">CH<sub style="top: 0.1333em;">2 </sub></li><li style="flex:1">C</li></ul><p></p><ul style="display: flex;"><li style="flex:1">O</li><li style="flex:1">O</li><li style="flex:1">OH </li><li style="flex:1">O</li></ul><p></p><ul style="display: flex;"><li style="flex:1">C</li><li style="flex:1">O</li></ul><p>H</p><p>C<sub style="top: 0.1333em;">3</sub>H<sub style="top: 0.1333em;">7 </sub></p><p>CH<sub style="top: 0.1333em;">3 </sub></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>A</strong></li><li style="flex:1"><strong>B</strong></li><li style="flex:1"><strong>C</strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>PV Butyral </strong></li><li style="flex:1"><strong>PV Alcohol </strong></li><li style="flex:1"><strong>PV Acetate </strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">B</li><li style="flex:1">U</li><li style="flex:1">T</li><li style="flex:1">V</li><li style="flex:1">A</li><li style="flex:1">R</li></ul><p></p><p><strong>2</strong></p><p><strong>TABLE 1 </strong></p><p><strong>®</strong></p><p><strong>Physical Properties of Butvar&nbsp;Resins (white, free-flowing powder) </strong></p><p><strong>ASTM </strong></p><ul style="display: flex;"><li style="flex:1"><strong>Property </strong></li><li style="flex:1"><strong>Units </strong></li><li style="flex:1"><strong>Method </strong></li><li style="flex:1"><strong>B-72 </strong></li><li style="flex:1"><strong>B-74 </strong></li><li style="flex:1"><strong>B-76 </strong></li><li style="flex:1"><strong>B-79 </strong></li><li style="flex:1"><strong>B-90 </strong></li><li style="flex:1"><strong>B-98 </strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">*Volatiles, max </li><li style="flex:1">%</li><li style="flex:1">3.5 </li><li style="flex:1">3.0 </li><li style="flex:1">5.0 </li><li style="flex:1">5.0 </li><li style="flex:1">5.0 </li><li style="flex:1">5.0 </li></ul><p>Molecular wt. (weight </p><p>average in thousands) </p><p>–</p><p>(1) (2) (2) (3) </p><ul style="display: flex;"><li style="flex:1">170-250 </li><li style="flex:1">120-150 </li><li style="flex:1">90-120 </li></ul><p>500-1,000 <br>200-450 18.0-28.0 <br>50-80 <br>100-400 75-200 9.0-16.0 <br>70-100 <br>600-1,200 <br>200-400 13.0-17.0 <br>40-70 <br>200-400 75-200 6.0-9.0 <br>Solution viscosity </p><ul style="display: flex;"><li style="flex:1">15% by weight </li><li style="flex:1">cp. </li></ul><p>cp. cp. <br>7,000-14,000 3,000-7,000 <br>Solution viscosity </p><ul style="display: flex;"><li style="flex:1">10% by weight </li><li style="flex:1">1,600-2,500 </li></ul><p>170-260 <br>800-1,300 37.0-47.0 <br>*Ostwald solution viscosity </p><p>Specific gravity 23˚/23˚ ( 0.002) </p><p>–</p><p></p><ul style="display: flex;"><li style="flex:1">D792-50 </li><li style="flex:1">1.100 </li></ul><p>1.0 <br>1.100 <br>1.0 <br>1.083 <br>1.0 <br>1.083 <br>1.0 <br>1.100 <br>0.9 <br>1.100 </p><ul style="display: flex;"><li style="flex:1">0.8 </li><li style="flex:1">Burning rate </li><li style="flex:1">ipm </li><li style="flex:1">D635-56T </li></ul><p>Refractive index ( 0.0005) </p><p>–</p><p></p><ul style="display: flex;"><li style="flex:1">D542-50 </li><li style="flex:1">1.490 </li></ul><p>0.5 <br>1.490 <br>0.5 <br>1.485 <br>0.3 <br>1.485 <br>0.3 <br>1.490 <br>0.5 <br>1.490 </p><ul style="display: flex;"><li style="flex:1">0.5 </li><li style="flex:1">Water absorption (24 hours) </li><li style="flex:1">%</li><li style="flex:1">D570-59aT </li></ul><p>*Hydroxl content expressed as % polyvinyl alcohol </p><p>–––<br>–––</p><p>17.5-20.0 <br>0-2.5 <br>17.5-20.0 <br>0-2.5 </p><p>11.5-13.5 </p><p>0-2.5 <br>88 </p><p>11.0-13.5 </p><p>0-2.5 88 </p><p>18.5-20.5 </p><p>0-1.5 <br>18.0-20.0 <br>0-2.5 <br>Acetate content expressed as % polyvinyl acetate </p><p>Butyral content expressed as % poly- </p><ul style="display: flex;"><li style="flex:1">vinyl butyral, approx. </li><li style="flex:1">80 </li><li style="flex:1">80 </li><li style="flex:1">80 </li><li style="flex:1">80 </li></ul><p></p><p>*Specification properties </p><p><strong>Percent Solids </strong><br><strong>Temperature </strong></p><ul style="display: flex;"><li style="flex:1"><strong>Product </strong></li><li style="flex:1"><strong>Solvent </strong></li><li style="flex:1"><strong>(˚C) </strong></li></ul><p></p><p>All properties were determined by ASTM methods except the following: <br>Anhydrous Methanol <br>ꢁ <strong>Molecular weight </strong>was determined via size exclusion chromatography with low-angle laser light scattering (SEC/LALLS) method of Cotts and Ouano in tetra-hydrofuran.† </p><ul style="display: flex;"><li style="flex:1">B-72 </li><li style="flex:1">7.5 </li><li style="flex:1">20 </li></ul><p>SD 29 </p><ul style="display: flex;"><li style="flex:1">Ethyl Alcohol </li><li style="flex:1">B-76, B-79 </li><li style="flex:1">5.0 </li><li style="flex:1">25 </li></ul><p>ꢁ <strong>Solution viscosity </strong>was determined in 15% by weight solutions in 60:40 toluene: ethanol at 25˚C, using a BrookfieldViscometer. Also in 10% solution in 95% ethanol @ 25˚C using an Ostwald-Cannon-FenskeViscometer. <br>B-74, B-90, B-98 <br>Anhydrous </p><ul style="display: flex;"><li style="flex:1">Methanol </li><li style="flex:1">6.0 </li><li style="flex:1">20 </li></ul><p>† P. Dublin, ed., <em>Microdomains In Polymer Solutions </em>(NewYork: Plenum Press, 1985), <br>ꢁ <strong>Ostwald solution viscosity </strong>for each product type measured with an Ostwald- </p><p>pp. 101-119. <br>Cannon-FenskeViscometer.The solvents and solids levels used are as follows: </p><p></p><ul style="display: flex;"><li style="flex:1">B</li><li style="flex:1">U</li><li style="flex:1">T</li><li style="flex:1">V</li><li style="flex:1">A</li><li style="flex:1">R</li></ul><p></p><p><strong>3</strong></p><p><strong>PROPERTIES </strong></p><p><strong>TABLE 2 </strong></p><p><strong>®</strong></p><p><strong>Chemical Properties of Butvar&nbsp;Resins </strong></p><p><strong>ASTM </strong></p><ul style="display: flex;"><li style="flex:1"><strong>Method </strong></li><li style="flex:1"><strong>Property </strong></li><li style="flex:1"><strong>Units </strong></li><li style="flex:1"><strong>B-72 </strong></li><li style="flex:1"><strong>B-74 </strong></li><li style="flex:1"><strong>B-76 </strong></li><li style="flex:1"><strong>B-79 </strong></li><li style="flex:1"><strong>B-90 </strong></li><li style="flex:1"><strong>B-98 </strong></li></ul><p></p><p><strong>Resistance to: </strong></p><p>Weak acids </p><p>––––</p><p>D543-56T D543-56T D543-56T D543-56T <br>EEEE<br>EEEE<br>EEEE<br>EEEE<br>EEEE<br>EEEE<br>Strong acids Weak bases Strong bases </p><p><strong>Organic solvents: </strong></p><p>Alcohols </p><p>––––––</p><p>D543-56T D543-56T D543-56T D543-56T D543-56T D543-56T <br>PGEF<br>PGEF<br>PFFPPP<br>PFFPPP<br>PGEF<br>PGEF<br>Chlorinated Aliphatic Aromatic </p><ul style="display: flex;"><li style="flex:1">Esters </li><li style="flex:1">F</li><li style="flex:1">F</li><li style="flex:1">F</li><li style="flex:1">F</li></ul><p></p><ul style="display: flex;"><li style="flex:1">Ketones </li><li style="flex:1">F</li><li style="flex:1">F</li><li style="flex:1">F</li><li style="flex:1">F</li></ul><p></p><p><strong>Key: E&nbsp;</strong>– excellent <strong>G </strong>– good <strong>F </strong>– fair <strong>P </strong>– poor </p><p><strong>TABLE 3 </strong></p><p><strong>Mechanical Properties of Butvar Resins </strong></p><p><strong>ASTM </strong><br><strong>Property </strong></p><p><strong>Tensile strength: </strong></p><p>Yield </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Units </strong></li><li style="flex:1"><strong>Method </strong></li><li style="flex:1"><strong>B-72 </strong></li><li style="flex:1"><strong>B-74 </strong></li><li style="flex:1"><strong>B-76 </strong></li><li style="flex:1"><strong>B-79 </strong></li><li style="flex:1"><strong>B-90 </strong></li><li style="flex:1"><strong>B-98 </strong></li></ul><p></p><p>3</p><p></p><ul style="display: flex;"><li style="flex:1">10 psi </li><li style="flex:1">D638-58T </li></ul><p>D638-58T <br>6.8-7.8 7.0-8.0 <br>6.8-7.8 7.0-8.0 <br>5.8-6.8 4.6-5.6 <br>5.8-6.8 4.6-5.6 <br>6.3-7.3 5.7-6.7 <br>6.3-7.3 5.6-6.6 </p><p>3</p><p></p><ul style="display: flex;"><li style="flex:1">Break </li><li style="flex:1">10 psi </li></ul><p></p><p><strong>Elongation: </strong></p><p></p><ul style="display: flex;"><li style="flex:1">Yield </li><li style="flex:1">%</li></ul><p>%<br>D638-58T D638-58T </p><ul style="display: flex;"><li style="flex:1">8</li><li style="flex:1">8</li><li style="flex:1">8</li><li style="flex:1">8</li><li style="flex:1">8</li><li style="flex:1">8</li></ul><p></p><ul style="display: flex;"><li style="flex:1">Break </li><li style="flex:1">70 </li><li style="flex:1">75 </li><li style="flex:1">110 </li><li style="flex:1">110 </li><li style="flex:1">100 </li><li style="flex:1">110 </li></ul><p>Modulus of </p><p>5</p><p></p><ul style="display: flex;"><li style="flex:1">elasticity (apparent) </li><li style="flex:1">10 psi </li><li style="flex:1">D638-58T </li></ul><p>D790-59T <br>3.3-3.4 12-13 <br>3.3-3.4 12-13 </p><ul style="display: flex;"><li style="flex:1">2.8-2.9 </li><li style="flex:1">2.8-2.9 </li><li style="flex:1">3.0-3.1 </li></ul><p>11-12 <br>3.1-3.2 11-12 <br>Flexural strength, yield </p><p>3</p><p></p><ul style="display: flex;"><li style="flex:1">10 psi </li><li style="flex:1">10.5-11.5 </li><li style="flex:1">10.5-11.5 </li></ul><p></p><p><strong>Hardness, Rockwell: </strong></p><p>ME</p><p>––</p><p>D785-51 D785-51 <br>115 20 <br>115 20 <br>100 <br>5<br>100 <br>5<br>115 20 <br>110 20 <br>Impact strength Izod, </p><ul style="display: flex;"><li style="flex:1">notched 1/2" x 1/2" </li><li style="flex:1">ft.lb./in. </li><li style="flex:1">D256-56 </li><li style="flex:1">1.1 </li><li style="flex:1">1.1 </li><li style="flex:1">0.8 </li><li style="flex:1">0.8 </li><li style="flex:1">0.9 </li><li style="flex:1">0.7 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">B</li><li style="flex:1">U</li><li style="flex:1">T</li><li style="flex:1">V</li><li style="flex:1">A</li><li style="flex:1">R</li></ul><p></p><p><strong>4</strong></p><p><strong>TABLE 4 </strong></p><p><strong>®</strong></p><p><strong>Thermal Properties of Butvar&nbsp;Resins </strong></p><p><strong>ASTM </strong></p><ul style="display: flex;"><li style="flex:1"><strong>Property </strong></li><li style="flex:1"><strong>Units </strong></li></ul><p></p><p>˚C </p><p><strong>Method </strong></p><p>D569-59 <br>(4) </p><p><strong>B-72 </strong></p><p>145-155 <br>72-78 </p><p><strong>B-74 </strong></p><p>135-145 <br>72-78 </p><p><strong>B-76 </strong></p><p>110-115 <br>62-72 </p><p><strong>B-79 </strong></p><p>110-115 <br>62-72 </p><p><strong>B-90 </strong></p><p>125-130 <br>72-78 </p><p><strong>B-98 </strong></p><p>105-110 <br>72-78 <br>Flow temperature, 1,000 psi </p><p>Glass transition </p><ul style="display: flex;"><li style="flex:1">temperature – Tg </li><li style="flex:1">˚C </li></ul><p></p><p><strong>Ash content at 550˚C: </strong></p><p></p><ul style="display: flex;"><li style="flex:1">In nitrogen </li><li style="flex:1">%</li></ul><p>%<br>(5) (5) <br>&lt;3.0 &lt;1.0 <br>&lt;3.0 &lt;1.0 </p><ul style="display: flex;"><li style="flex:1">&lt;2.0 </li><li style="flex:1">&lt;2.0 </li><li style="flex:1">&lt;3.0 </li><li style="flex:1">&lt;3.0 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">In air </li><li style="flex:1">&lt;0.75 </li><li style="flex:1">&lt;0.75 </li><li style="flex:1">&lt;0.75 </li><li style="flex:1">&lt;0.75 </li></ul><p>Heat distortion </p><ul style="display: flex;"><li style="flex:1">temperature </li><li style="flex:1">˚C </li><li style="flex:1">D648-56 </li></ul><p>(6) <br>56-60 <br>220 <br>56-60 <br>220 <br>50-54 <br>200 <br>50-54 <br>200 <br>52-56 <br>205 <br>45-55 <br>200 <br>Heat sealing </p><ul style="display: flex;"><li style="flex:1">temperature </li><li style="flex:1">˚F` </li></ul><p></p><p>ꢁ <strong>Glass transition temperature </strong>(Tg) was determined by Differential Scanning </p><p>ꢁ <strong>Heat-sealing temperature </strong>was determined on a 1-mil dried film on paper cast from a 10% solution in 60:40 toluene: ethanol. A dwell time of 1.5 seconds at a 60 psi line pressure was used on the heat sealer. <br>Calorimeter (DSC) over a range of 30˚C to 100˚C on dried granular resin. <br>ꢁ <strong>Ash content </strong>of the Thermal Gravimetric Analysis (TGA) was determined as a weight loss versus temperature profile conducted at a heating rate of 10˚C/min. </p><p><strong>TABLE 5 </strong></p><p><strong>Electrical Properties of Butvar Resins </strong></p><p><strong>ASTM </strong></p><ul style="display: flex;"><li style="flex:1"><strong>Property </strong></li><li style="flex:1"><strong>Units </strong></li><li style="flex:1"><strong>Method </strong></li><li style="flex:1"><strong>B-72 </strong></li><li style="flex:1"><strong>B-74 </strong></li><li style="flex:1"><strong>B-76 </strong></li><li style="flex:1"><strong>B-79 </strong></li><li style="flex:1"><strong>B-90 </strong></li><li style="flex:1"><strong>B-98 </strong></li></ul><p></p><p><strong>Dieletric constant: </strong></p><p>50 cps </p><p>––––</p><p>D150-59T D150-59T D150-59T D150-59T <br>3.2 3.0 2.8 2.7 <br>3.2 3.0 2.8 2.7 <br>2.7 2.6 2.6 2.5 <br>2.7 2.6 2.6 2.5 <br>3.2 3.0 2.8 2.7 <br>3.3 3.0 2.8 2.8 </p><p>3</p><p>10 cps </p><p>6</p><p>10 cps </p><p>7</p><p>10 cps </p><p><strong>Dissipation factor: </strong></p><p>50 cps </p><p>––––</p><p>D150-59T D150-59T D150-59T D150-59T <br>0.0064 0.0062 0.027 <br>0.0064 0.0062 0.027 <br>0.0050 0.0039 0.013 <br>0.0050 0.0039 0.013 <br>0.0066 0.0059 0.022 <br>0.0064 0.0061 0.023 </p><p>3</p><p>10 cps </p><p>6</p><p>10 cps </p><p>7</p><p></p><ul style="display: flex;"><li style="flex:1">10 cps </li><li style="flex:1">0.031 </li><li style="flex:1">0.031 </li><li style="flex:1">0.015 </li><li style="flex:1">0.015 </li><li style="flex:1">0.023 </li><li style="flex:1">0.024 </li></ul><p></p><p><strong>Dielectric strength </strong>(1/8" thickness): </p><p></p><ul style="display: flex;"><li style="flex:1">Short time </li><li style="flex:1">v/mil </li></ul><p>v/mil <br>D149-59 D149-59 <br>420 400 <br>420 400 <br>480 390 <br>480 390 <br>450 370 <br>400 </p><ul style="display: flex;"><li style="flex:1">380 </li><li style="flex:1">Step-by-step </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">B</li><li style="flex:1">U</li><li style="flex:1">T</li><li style="flex:1">V</li><li style="flex:1">A</li><li style="flex:1">R</li></ul><p></p><p><strong>5</strong></p><p><strong>PROPERTIES </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>PRODUCT TYPES </strong></li><li style="flex:1"><strong>BUTVAR: THE RIGHT RESIN SOLUTIONS </strong></li></ul><p></p><p>Butvar brand resins generally are soluble in alcohols, glycol ethers and certain mixtures of polar and non-polar solvents. A representative list of Butvar solvents can be found in Table 6. In general, Butvar B-98 resin will show the same general compatibility characteristics as B-90 and, therefore, should prove advantageous where physical and chemical properties of B-90 are desired but lower solution viscosities are necessary.The same is true for Butvar B-79 in relation to B-76. </p><p>®</p><p>The properties of the various types of Butvar&nbsp;resins are described in Tables 1 through 5.The resins are offered in a variety of molecular weight ranges and viscosities. B-76 and B-79 have a lower hydroxyl content than the other Butvar resins.This permits broader solubility characteristics. </p><p>As a general rule, the substitution of butyral groups for acetate groups results in a more hydrophopic polymer with a higher heat distortion temperature. At the same time, the polymer’s toughness and adhesion to various substrates is considerably increased.The outstanding adhesion of the polyvinyl butyral resins is a result of their terpolymer constitution. Because each molecule presents the choice of three different functional groups to a surface, the probability of adhesion to a wide variety of substrates is increased substantially. <br>When an alcohol is the only solvent, the viscosity of a Butvar solution increases as the molecular weight of the alcohol increases. Blends of alcohols with aromatic solvents provide the best starting point for the development of solvent systems.Where alcohols, such as ethyl or isopropyl, are employed either alone or in a mixture with other solvents, use the 95% grades.The presence of water gives lower solution viscosities than solutions utilizing anhydrous alcohols. <br>Although polyvinyl butyral resins normally are thermoplastic and soluble in a range of solvents, they may be crosslinked through heating and with a trace of mineral acid. Crosslinking is generally caused by transacetalization but also may involve more complex mechanisms, such as a reaction between acetate or hydroxyl groups on adjacent chains. <br>Butvar solutions show very marked viscosity increases as resin solids increase.This effect is shown in Graphs 3 through 10. </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    32 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us