
<p><strong>Seoul National University </strong></p><p><strong>High Entropy Alloy </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Traditional alloy </strong></li><li style="flex:1"><strong>High entropy alloy </strong></li></ul><p></p><p><strong>Minor element 3 </strong></p><p><strong>Major element … </strong></p><p><strong>Major element 3 </strong></p><p><strong>Minor element 2 </strong></p><p><strong>Major element 1 </strong></p><p><strong>Major element </strong></p><p><strong>Major element 2 </strong></p><p><strong>Minor element 1 </strong></p><p>풏ꢇꢈꢉꢊꢋ 풐ꢌ ꢊ풆ꢊꢈꢊ풏ꢍꢎ ↑ ↔ 풄풐풏ꢌꢏꢐꢇꢋꢑꢍꢏ풐풏ꢑ풆 ꢊ풏ꢍꢋ풐ꢒꢓ ↑ </p><p>∆푆<sub style="top: 0.2em;">푐ꢀꢁꢂꢃꢄ. </sub>= 푅ꢅꢆ(ꢆ) </p><p><strong>Y.Zhang et al., Prog.Mat.Sci. 61, 1 (2014) </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>(1) Thermodynamic : high entropy </strong></li><li style="flex:1"><strong>(3) Kinetics : sluggish diffusion </strong></li></ul><p><strong>(2) Structure : severe lattice distortion (4) Property : cocktail effect </strong></p><p><strong>High entropy alloy </strong><br><strong>: Potential candidate material for extreme environment applications </strong></p><p><strong>Seoul National University </strong></p><p><strong>Mechanical properties of HEA </strong></p><p>. <strong>Ashby map </strong></p><p><em>Bernd Gludovatz / SCIENCE VOL 345 ISSUE 6201 </em></p><p>There are clearly stronger materials, which is understandable given that CrMnFeCoNi is a single-phase material, </p><p>but the <strong>toughness of this high-entropy alloy exceeds that of virtually all pure metals and metallic alloys. </strong></p><p><strong>Seoul National University </strong></p><p><strong>Fracture toughness of HEA </strong></p><p><em>Bernd Gludovatz / SCIENCE VOL 345 ISSUE 6201 </em></p><p>Although the toughness of the other materials decreases with decreasing temperature, the toughness of the highentropy alloy remains unchanged. </p><p><strong>mechanical properties actually improve at cryogenic temperatures </strong></p><p><strong>Seoul National University </strong></p><p><strong>Fracture Toughness Testing </strong></p><p><strong>Compact tension test & Three point bending test </strong></p><p><strong>Pre-cracking </strong></p><p><strong>Limitation </strong></p><p> <strong>Destructive </strong></p><p><strong>Fracturing </strong></p><p> <strong>Complex testing procedure </strong> <strong>Cannot apply to in-service </strong></p><p><strong>Development of testing method to measure the fracture </strong></p><p><strong>properties more easily and more economically </strong></p><p><strong>Seoul National University </strong></p><p><strong>Indentation Fracture Toughness </strong></p><p>. <strong>Instrumented Indentation Technique (IIT) </strong></p><p> <strong>In-situ & In-field System, Non-destructive & Local test, Simple & fast </strong></p><p>. <strong>Indentation Cracking Method (cracking in indentation) </strong></p><p>1<br>2</p><p><br></p><p></p><ul style="display: flex;"><li style="flex:1"><em>E</em></li><li style="flex:1"><em>P</em></li></ul><p></p><p> </p><p><em>K </em>= α </p><p> </p><p><em>IC </em></p><p>3</p><p><sup style="top: -0.4693em;">2 </sup> </p><p><em>H</em></p><p> </p><p><em>c</em></p><p> <strong>Only for ceramic materials </strong><br><strong>(very brittle) </strong></p><p>[Vickers indenter, Macroscale] </p><p><strong>Seoul National University </strong></p><p><strong>Indentation Fracture Toughness </strong></p><p>. <strong>In case of metallic materials (no cracking in indentation) </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>IIT </strong></li><li style="flex:1"><strong>Fracture test </strong></li></ul><p></p><p><strong>Indenter </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>No crack and no fracture </strong></li><li style="flex:1"><strong>Crack propagation and fracture </strong></li></ul><p></p><p>. <strong>How to correlate flat punch indentation with crack tip behavior </strong></p><p><strong>Virtual crack </strong></p><p>isotropic </p><p><strong>Seoul National University </strong></p><p><strong>How to correlate flat punch indentation with crack tip behavior </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Contact mechanics </strong></li><li style="flex:1"><strong>Fracture mechanics </strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>of flat punch indentation </strong></li><li style="flex:1"><strong>of cracked round bar specimen </strong></li></ul><p><strong>Direct calculation of J from indentation curve </strong></p><p><strong>Determination of Fracture toughness </strong></p><p><strong>Flat punch: regarded as a very deep cracked round bar specimen </strong></p><p><strong>Seoul National University </strong></p><p><strong>How to correlate flat punch indentation with crack tip behavior </strong></p><p><strong>* Size effect </strong></p><p></p><ul style="display: flex;"><li style="flex:1">* Load-depth curve </li><li style="flex:1">* Normalization </li></ul><p></p><p><strong>* Crack initiation point </strong></p><p>J. H. Giovanola et al., <em>ASTM STP 1244 </em>(1995) </p><p>In flat-punch indentation test </p><p><strong>Seoul National University </strong></p><p><strong>How to correlate flat punch indentation with crack tip behavior </strong></p><p><strong>* Load criterion </strong><br><strong>* Depth criterion </strong></p><p><strong>* Evaluation </strong></p><p>푷</p><p>푲<sub style="top: 0.34em;">푰 </sub>= </p><p>ퟐꢑ 흅ꢑ <br>(ퟏ − 흂<sup style="top: -0.6108em;">ퟐ</sup>)푲<sup style="top: -0.6612em;">ퟐ</sup><sub style="top: 0.3892em;">푰 </sub></p><p>푨<sub style="top: 0.34em;">ꢒ풆 </sub></p><p>흅ꢑ<sup style="top: -0.5em;">ퟐ </sup></p><p>푱 = 푱<sub style="top: 0.34em;">ꢊ </sub>+ 푱<sub style="top: 0.34em;">ꢒ </sub>= </p><p>+ 휼<sub style="top: 0.34em;">ꢒ풆 </sub></p><p>푬</p><p><strong>Seoul National University </strong></p><p><strong>Fracture toughness of cantor alloy </strong></p><p><strong>Reference alloy : Cantor alloy – Cr</strong><sub style="top: 0.41em;"><strong>20</strong></sub><strong>Mn</strong><sub style="top: 0.41em;"><strong>20</strong></sub><strong>Fe</strong><sub style="top: 0.41em;"><strong>20</strong></sub><strong>Co</strong><sub style="top: 0.41em;"><strong>20</strong></sub><strong>Ni</strong><sub style="top: 0.41em;"><strong>20 </strong></sub></p><p><em>Bernd Gludovatz / SCIENCE VOL 345 ISSUE 6201 </em></p><p>Process : Arc melting, copper mold drop casting, cold forging and cross rolling at RT, recrystallization </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>KjIc </strong></li><li style="flex:1"><strong>Ave. (Mpa·m</strong><sup style="top: -0.41em;"><strong>1/2 </strong></sup></li></ul><p></p><p><strong>~217 </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>)</strong></li><li style="flex:1"><strong>Grain size (μm) </strong></li></ul><p></p><p><strong>Cantor @293K </strong></p><p><strong>Cantor @200K Cantor3 @77K </strong></p><p><strong>~ 6 </strong></p><p>~ 6 ~ 6 </p><p>~221 ~219 </p><p><strong>Seoul National University </strong></p><p><strong>Fracture toughness of cantor alloy </strong></p><p><strong>Reference alloy : CrCoNi </strong></p><p><em>Bernd Gludovatz/ NATURE COMMUNICATIONS | 7:10602 | DOI: 10.1038/ncomms10602 | </em></p><p>Process : Arc melting, copper mold drop casting, cold forging and cross rolling at RT, recrystallization </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>KjIc </strong></li><li style="flex:1"><strong>Ave. (Mpa·m</strong><sup style="top: -0.41em;"><strong>1/2 </strong></sup></li></ul><p></p><p><strong>~205 </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>)</strong></li><li style="flex:1"><strong>Grain size (μm) </strong></li></ul><p></p><p><strong>@293K </strong></p><p><strong>@200K </strong><br><strong>@77K </strong></p><p><strong>~ 5 </strong></p><p>~ 5 ~ 5 </p><p>~265 ~273 </p><p><strong>Seoul National University </strong></p><p><strong>XRD data of cantor alloy </strong></p><p><strong>Cantor1 (As-cast) Cantor2 (24h homogenization) Cantor3 (After recrystallization) </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>20 </strong></li><li style="flex:1"><strong>30 </strong></li><li style="flex:1"><strong>40 </strong></li><li style="flex:1"><strong>50 </strong></li><li style="flex:1"><strong>60 </strong></li><li style="flex:1"><strong>70 </strong></li><li style="flex:1"><strong>80 </strong></li></ul><p></p><p><strong>2 theta (deg.) </strong></p><p><strong>XRD data shows that all specimen have FCC crystal structure </strong></p><p><strong>Seoul National University </strong></p><p><strong>Microstructure of Cantor alloy </strong></p><p><strong>Cantor 1 </strong></p><p><strong>(as-cast) </strong></p><p><strong>Cantor 2 </strong></p><p><strong>(24h homogenization) </strong></p><p><strong>Cantor 3 </strong></p><p><strong>( + cold rolling + recrystallization) </strong></p><p><strong>Dendritic growth </strong><br><strong>Annealing twin </strong></p><p><strong>100μm </strong><br><strong>100μm </strong></p><p><strong>5μm </strong></p><p><strong>Grain size : ~ 97 μm </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>~ 107 μm </strong></li><li style="flex:1"><strong>~ 4 μm </strong></li></ul><p></p><p><strong>Seoul National University </strong></p><p><strong>Indentation test for toughness of cantor alloy </strong></p><p>. <strong>Test condition </strong></p><p>Loading rate : 0.3mm/min, Depth control : 100um, Zero index : 0.1kgf </p><p>. <strong>Normalized curve </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Cantor 2 </strong></li><li style="flex:1"><strong>Cantor 3 </strong></li></ul><p><strong>Cantor 1 </strong></p><p>2500 2000 1500 1000 <br>500 <br>2500 2000 1500 1000 <br>500 <br>2500 2000 1500 1000 <br>500 </p><p><strong>Cantor 1 </strong></p><ul style="display: flex;"><li style="flex:1"><strong>Cantor 2 </strong></li><li style="flex:1"><strong>Cantor 3 </strong></li></ul><p></p><p>0<br>0.0 <br>0<br>0.0 <br>0<br>0.0 </p><ul style="display: flex;"><li style="flex:1">0.1 </li><li style="flex:1">0.2 </li><li style="flex:1">0.3 </li><li style="flex:1">0.4 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">0.1 </li><li style="flex:1">0.2 </li><li style="flex:1">0.3 </li><li style="flex:1">0.4 </li><li style="flex:1">0.1 </li><li style="flex:1">0.2 </li><li style="flex:1">0.3 </li><li style="flex:1">0.4 </li></ul><p></p><p><strong>h/a </strong></p><ul style="display: flex;"><li style="flex:1"><strong>h/a </strong></li><li style="flex:1"><strong>h/a </strong></li></ul><p></p><p><strong>Seoul National University </strong></p><p><strong>Result of indentation test </strong></p><p>This work Ref </p><p><strong>260 240 </strong></p><p><strong>245 217 </strong></p><p><strong>220 200 </strong></p><p><strong>217 </strong></p><p><strong>Mpa·m</strong><sup style="top: -0.2802em;"><strong>1/2 </strong></sup></p><p><strong>200 </strong></p><p><strong>180 </strong><br><strong>0</strong></p><p><strong>Cantor3 </strong><br><strong>Cantor2 </strong><br><strong>Cantor1 </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Ave. </strong></li><li style="flex:1"><strong>Grain size </strong></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><strong>Kjc </strong></li><li style="flex:1"><strong>Test 1 </strong></li><li style="flex:1"><strong>Test 2 </strong></li><li style="flex:1"><strong>Test 3 </strong></li><li style="flex:1"><strong>Test 4 </strong></li></ul><p><strong>(Mpa·m</strong><sup style="top: -0.41em;"><strong>1/2 </strong></sup></p><p><strong>217 </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>)</strong></li><li style="flex:1"><strong>(μm) </strong></li></ul><p></p><p><strong>Ref. </strong></p><p></p><ul style="display: flex;"><li style="flex:1">-</li><li style="flex:1">-</li><li style="flex:1">-</li><li style="flex:1">-</li></ul><p></p><p><strong>~ 6 </strong></p><p>~ 97 <br>~ 107 </p><p><strong>~ 4 </strong><br><strong>Cantor1 Cantor2 Cantor3 </strong></p><p>229.913 195.559 230.931 <br>225.478 203.835 241.726 <br>204.192 198.548 254.396 <br>208.74 <br>203.291 252.385 </p><p><strong>217.0808 200.3083 244.8595 </strong></p><p><strong>Ref. and cantor3 which are similar processing condition show 12% deviation </strong></p><p><strong>Seoul National University </strong></p><p><strong>Strength of Ni-Fe-Cr systems </strong></p><p><em>H.S.Oh / ph.D graduation paper </em></p><p>1100 1000 <br>900 800 700 600 500 400 300 200 100 <br>0</p><p>V<sub style="top: 0.1397em;">36.8</sub>Ni<sub style="top: 0.14em;">63.2 </sub></p><p><strong>Ni Fe Cr (at%) </strong><br><strong>40 30 30 </strong></p><p><strong>add V5 add V10 </strong></p><p>1200 1000 <br>800 600 400 200 <br>0</p><p>~8.3 μm </p><p>CrCoNi (Acta Mater., 2017) </p><p>CrMnFeCoNi (Science, 2014) </p><p>~6.5 μm <br>~6 μm </p><p><strong>avg. grain size : 5.75 </strong></p><p><strong>μm </strong></p><p>(111) </p><p><strong>V5 </strong></p><p>(311) <br>(220) <br>(200) </p><p><strong>FCC phase </strong></p><p>10 </p><p>1.00 1.25 1.50 1.75 2.00 2.25 d-spacing (A) </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">5</li><li style="flex:1">15 </li><li style="flex:1">20 </li><li style="flex:1">25 </li><li style="flex:1">30 </li><li style="flex:1">35 </li><li style="flex:1">40 </li><li style="flex:1">45 </li><li style="flex:1">50 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">10 </li><li style="flex:1">20 </li><li style="flex:1">30 </li><li style="flex:1">40 </li><li style="flex:1">50 </li><li style="flex:1">60 </li></ul><p></p><p><strong>strain (%) </strong></p><p>Engineering strain (%) </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>at% </strong></li><li style="flex:1"><strong>Y.S (MPa) </strong></li><li style="flex:1"><strong>U.T.S (MPa) </strong></li><li style="flex:1"><strong>Elongation (%) </strong></li><li style="flex:1"><strong>Grain size (μm) </strong></li></ul><p><strong>Cantor CoCrNi </strong><br><strong>NiV </strong><br><strong>331.96 </strong><br><strong>452.9 </strong><br><strong>693.49 927.36 </strong><br><strong>1174.05 </strong><br><strong>736.8 </strong><br><strong>41.3 </strong><br><strong>45.21 44.53 </strong><br><strong>28.3 </strong><br><strong>~ 6 </strong><br><strong>~ 6.5 ~ 8.3 </strong><br><strong>~ 3.65 </strong><br><strong>743.49 </strong><br><strong>470.2 </strong></p><p><strong>Ni</strong><sub style="top: 0.2201em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2201em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2201em;"><strong>30 </strong></sub></p><p><strong>Ni</strong><sub style="top: 0.2196em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2196em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2196em;"><strong>25</strong></sub><strong>V</strong><sub style="top: 0.2196em;"><strong>5 </strong></sub><strong>Ni</strong><sub style="top: 0.2196em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2196em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2196em;"><strong>20</strong></sub><strong>V</strong><sub style="top: 0.2196em;"><strong>10 </strong></sub><br><strong>476.4 682.7 </strong><br><strong>785.7 954.7 </strong><br><strong>28.6 19.4 </strong><br><strong>~ 4.18 ~ 5.75 </strong></p><p><strong>Seoul National University </strong></p><p><strong>Heat treatment of specimen </strong></p><p><strong>1</strong><br><strong>2</strong><br><strong>3</strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Heat treatment </strong></li><li style="flex:1"><strong>Phase </strong></li><li style="flex:1"><strong>Grain size (μm) </strong></li></ul><p><strong>1</strong></p><p><strong>234</strong><br><strong>Ni</strong><sub style="top: 0.1301em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.1301em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.1301em;"><strong>30 </strong></sub><strong>_1 Ni</strong><sub style="top: 0.1304em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.1304em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.1304em;"><strong>30 </strong></sub><strong>_3 </strong></p><p></p><ul style="display: flex;"><li style="flex:1">FCC </li><li style="flex:1">-</li></ul><p>As-cast </p><p>homogenization + Cold rolling + Recrystallization <br>FCC FCC FCC <br>~ 3.7 <br>-</p><p><strong>Ni</strong><sub style="top: 0.1304em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.1304em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.1304em;"><strong>20</strong></sub><strong>+V</strong><sub style="top: 0.1304em;"><strong>10 </strong></sub><strong>_1 Ni</strong><sub style="top: 0.1304em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.1304em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.1304em;"><strong>20</strong></sub><strong>+V</strong><sub style="top: 0.1304em;"><strong>10 </strong></sub><strong>_3 </strong></p><p>As-cast homogenization + Cold rolling + Recrystallization <br>~ 4 </p><p><strong>Seoul National University </strong></p><p><strong>Fracture toughness and tensile property </strong></p><p></p><ul style="display: flex;"><li style="flex:1">. <strong>Yield Strength vs Fracture toughness </strong></li><li style="flex:1">. <strong>Ductility vs Fracture toughness </strong></li></ul><p></p><p>800 </p><p>50 40 30 20 10 </p><p><strong>V</strong><sub style="top: 0.2em;"><strong>36.8</strong></sub><strong>Ni</strong><sub style="top: 0.2em;"><strong>63.2 </strong></sub></p><p>700 </p><p><strong>Ni</strong><sub style="top: 0.2em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2em;"><strong>20</strong></sub><strong>V</strong><sub style="top: 0.2em;"><strong>10 </strong></sub></p><p><strong>CoCrNi </strong></p><p><strong>V</strong><sub style="top: 0.2em;"><strong>36.8</strong></sub><strong>Ni</strong><sub style="top: 0.2em;"><strong>63.2 </strong></sub></p><p>600 </p><p><strong>Cantor </strong></p><p>500 </p><p><strong>Ni</strong><sub style="top: 0.2em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2em;"><strong>25</strong></sub><strong>V</strong><sub style="top: 0.2em;"><strong>5 </strong></sub></p><p><strong>CoCrNi </strong></p><p><strong>Ni</strong><sub style="top: 0.2em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2em;"><strong>25</strong></sub><strong>V</strong><sub style="top: 0.2em;"><strong>5 </strong></sub><br><strong>Ni</strong><sub style="top: 0.2em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2em;"><strong>30 </strong></sub><br><strong>Ni</strong><sub style="top: 0.2em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2em;"><strong>30 </strong></sub></p><p>400 </p><p><strong>Ni</strong><sub style="top: 0.2em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2em;"><strong>20</strong></sub><strong>V</strong><sub style="top: 0.2em;"><strong>10 </strong></sub></p><p><strong>Cantor </strong></p><p>300 </p><ul style="display: flex;"><li style="flex:1">200 </li><li style="flex:1">250 </li><li style="flex:1">300 </li><li style="flex:1">350 </li><li style="flex:1">400 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">250 </li><li style="flex:1">300 </li><li style="flex:1">350 </li><li style="flex:1">400 </li></ul><p></p><p><strong>Fracture toughness </strong></p><p><strong>Fracture toughness </strong></p><p><strong>Fracture toughness through IIT yield strength에 의한 영향이 더 큰 것으로 보임. </strong></p><p><strong>Grain size effect on fracture toughness </strong></p><p><strong>260 </strong></p><p>This work </p><p><strong>250 240 230 220 210 200 190 </strong></p><p></p><ul style="display: flex;"><li style="flex:1">0.0 </li><li style="flex:1">0.1 </li><li style="flex:1">0.2 </li><li style="flex:1">0.3 </li></ul><p></p><p>1 / Grain size(um) </p><p><strong>Grain size 가 작아질 수록 Fracture toughness 가 증가하는 것으로 보임. </strong></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages23 Page
-
File Size-