Fracture Toughness of FCC High Entropy Alloy

Fracture Toughness of FCC High Entropy Alloy

<p><strong>Seoul National University </strong></p><p><strong>High Entropy Alloy </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Traditional alloy </strong></li><li style="flex:1"><strong>High entropy alloy </strong></li></ul><p></p><p><strong>Minor element 3 </strong></p><p><strong>Major element … </strong></p><p><strong>Major element 3 </strong></p><p><strong>Minor element 2 </strong></p><p><strong>Major element 1 </strong></p><p><strong>Major element </strong></p><p><strong>Major element 2 </strong></p><p><strong>Minor element 1 </strong></p><p>풏ꢇꢈꢉꢊꢋ 풐ꢌ ꢊ풆ꢊꢈꢊ풏ꢍꢎ&nbsp;↑ ↔ 풄풐풏ꢌꢏꢐꢇꢋꢑꢍꢏ풐풏ꢑ풆 ꢊ풏ꢍꢋ풐ꢒꢓ&nbsp;↑ </p><p>∆푆<sub style="top: 0.2em;">푐ꢀꢁꢂꢃꢄ. </sub>= 푅ꢅꢆ(ꢆ) </p><p><strong>Y.Zhang et al., Prog.Mat.Sci. 61, 1 (2014) </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>(1) Thermodynamic : high entropy </strong></li><li style="flex:1"><strong>(3) Kinetics : sluggish diffusion </strong></li></ul><p><strong>(2) Structure : severe lattice distortion&nbsp;(4) Property : cocktail effect </strong></p><p><strong>High entropy alloy </strong><br><strong>: Potential candidate material for extreme environment applications </strong></p><p><strong>Seoul National University </strong></p><p><strong>Mechanical properties of HEA </strong></p><p>. <strong>Ashby map </strong></p><p><em>Bernd Gludovatz / SCIENCE VOL 345 ISSUE 6201 </em></p><p>There are clearly stronger materials, which is&nbsp;understandable given that CrMnFeCoNi is a single-phase material, </p><p>but the <strong>toughness of this high-entropy alloy exceeds that of virtually all pure metals and metallic alloys. </strong></p><p><strong>Seoul National University </strong></p><p><strong>Fracture toughness of HEA </strong></p><p><em>Bernd Gludovatz / SCIENCE VOL 345 ISSUE 6201 </em></p><p>Although the toughness of the other materials decreases with decreasing temperature, the toughness of the highentropy alloy remains unchanged. </p><p><strong>mechanical properties actually improve at cryogenic temperatures </strong></p><p><strong>Seoul National University </strong></p><p><strong>Fracture Toughness Testing </strong></p><p><strong>Compact tension test &amp; Three point bending test </strong></p><p><strong>Pre-cracking </strong></p><p><strong>Limitation </strong></p><p> <strong>Destructive </strong></p><p><strong>Fracturing </strong></p><p> <strong>Complex testing procedure </strong> <strong>Cannot apply to in-service </strong></p><p><strong>Development of testing method to measure the fracture </strong></p><p><strong>properties more easily and more economically </strong></p><p><strong>Seoul National University </strong></p><p><strong>Indentation Fracture Toughness </strong></p><p>. <strong>Instrumented Indentation Technique (IIT) </strong></p><p> <strong>In-situ &amp; In-field System, Non-destructive &amp; Local test, Simple &amp; fast </strong></p><p>. <strong>Indentation Cracking Method (cracking in indentation) </strong></p><p>1<br>2</p><p><br></p><p></p><ul style="display: flex;"><li style="flex:1"><em>E</em></li><li style="flex:1"><em>P</em></li></ul><p></p><p>  </p><p><em>K </em>= α </p><p>  </p><p><em>IC </em></p><p>3</p><p><sup style="top: -0.4693em;">2 </sup> </p><p><em>H</em></p><p>  </p><p><em>c</em></p><p> <strong>Only for ceramic materials </strong><br><strong>(very brittle) </strong></p><p>[Vickers indenter, Macroscale] </p><p><strong>Seoul National University </strong></p><p><strong>Indentation Fracture Toughness </strong></p><p>. <strong>In case of metallic materials (no cracking in indentation) </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>IIT </strong></li><li style="flex:1"><strong>Fracture test </strong></li></ul><p></p><p><strong>Indenter </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>No crack and no fracture </strong></li><li style="flex:1"><strong>Crack propagation and fracture </strong></li></ul><p></p><p>. <strong>How to correlate flat punch indentation with crack tip behavior </strong></p><p><strong>Virtual crack </strong></p><p>isotropic </p><p><strong>Seoul National University </strong></p><p><strong>How to correlate flat punch indentation with crack tip behavior </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Contact mechanics </strong></li><li style="flex:1"><strong>Fracture mechanics </strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>of flat punch indentation </strong></li><li style="flex:1"><strong>of cracked round bar specimen </strong></li></ul><p><strong>Direct calculation of J from indentation curve </strong></p><p><strong>Determination of Fracture toughness </strong></p><p><strong>Flat punch: regarded as a very deep cracked round bar specimen </strong></p><p><strong>Seoul National University </strong></p><p><strong>How to correlate flat punch indentation with crack tip behavior </strong></p><p><strong>* Size effect </strong></p><p></p><ul style="display: flex;"><li style="flex:1">* Load-depth curve </li><li style="flex:1">* Normalization </li></ul><p></p><p><strong>* Crack initiation point </strong></p><p>J. H. Giovanola et al., <em>ASTM STP 1244 </em>(1995) </p><p>In flat-punch indentation test </p><p><strong>Seoul National University </strong></p><p><strong>How to correlate flat punch indentation with crack tip behavior </strong></p><p><strong>* Load criterion </strong><br><strong>* Depth criterion </strong></p><p><strong>* Evaluation </strong></p><p>푷</p><p>푲<sub style="top: 0.34em;">푰 </sub>= </p><p>ퟐꢑ 흅ꢑ <br>(ퟏ − 흂<sup style="top: -0.6108em;">ퟐ</sup>)푲<sup style="top: -0.6612em;">ퟐ</sup><sub style="top: 0.3892em;">푰 </sub></p><p>푨<sub style="top: 0.34em;">ꢒ풆 </sub></p><p>흅ꢑ<sup style="top: -0.5em;">ퟐ </sup></p><p>푱 = 푱<sub style="top: 0.34em;">ꢊ </sub>+ 푱<sub style="top: 0.34em;">ꢒ </sub>= </p><p>+ 휼<sub style="top: 0.34em;">ꢒ풆 </sub></p><p>푬</p><p><strong>Seoul National University </strong></p><p><strong>Fracture toughness of cantor alloy </strong></p><p><strong>Reference alloy : Cantor alloy – Cr</strong><sub style="top: 0.41em;"><strong>20</strong></sub><strong>Mn</strong><sub style="top: 0.41em;"><strong>20</strong></sub><strong>Fe</strong><sub style="top: 0.41em;"><strong>20</strong></sub><strong>Co</strong><sub style="top: 0.41em;"><strong>20</strong></sub><strong>Ni</strong><sub style="top: 0.41em;"><strong>20 </strong></sub></p><p><em>Bernd Gludovatz / SCIENCE VOL 345 ISSUE 6201 </em></p><p>Process : Arc melting, copper mold drop casting, cold forging and cross rolling at RT, recrystallization </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>KjIc </strong></li><li style="flex:1"><strong>Ave. (Mpa·m</strong><sup style="top: -0.41em;"><strong>1/2 </strong></sup></li></ul><p></p><p><strong>~217 </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>)</strong></li><li style="flex:1"><strong>Grain size (μm) </strong></li></ul><p></p><p><strong>Cantor @293K </strong></p><p><strong>Cantor @200K Cantor3 @77K </strong></p><p><strong>~ 6 </strong></p><p>~ 6 ~ 6 </p><p>~221 ~219 </p><p><strong>Seoul National University </strong></p><p><strong>Fracture toughness of cantor alloy </strong></p><p><strong>Reference alloy : CrCoNi </strong></p><p><em>Bernd Gludovatz/ NATURE COMMUNICATIONS | 7:10602 | DOI: 10.1038/ncomms10602 | </em></p><p>Process : Arc melting, copper mold drop casting, cold forging and cross rolling at RT, recrystallization </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>KjIc </strong></li><li style="flex:1"><strong>Ave. (Mpa·m</strong><sup style="top: -0.41em;"><strong>1/2 </strong></sup></li></ul><p></p><p><strong>~205 </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>)</strong></li><li style="flex:1"><strong>Grain size (μm) </strong></li></ul><p></p><p><strong>@293K </strong></p><p><strong>@200K </strong><br><strong>@77K </strong></p><p><strong>~ 5 </strong></p><p>~ 5 ~ 5 </p><p>~265 ~273 </p><p><strong>Seoul National University </strong></p><p><strong>XRD data of cantor alloy </strong></p><p><strong>Cantor1 (As-cast) Cantor2 (24h homogenization) Cantor3 (After recrystallization) </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>20 </strong></li><li style="flex:1"><strong>30 </strong></li><li style="flex:1"><strong>40 </strong></li><li style="flex:1"><strong>50 </strong></li><li style="flex:1"><strong>60 </strong></li><li style="flex:1"><strong>70 </strong></li><li style="flex:1"><strong>80 </strong></li></ul><p></p><p><strong>2 theta (deg.) </strong></p><p><strong>XRD data shows that all specimen have FCC crystal structure </strong></p><p><strong>Seoul National University </strong></p><p><strong>Microstructure of Cantor alloy </strong></p><p><strong>Cantor 1 </strong></p><p><strong>(as-cast) </strong></p><p><strong>Cantor 2 </strong></p><p><strong>(24h homogenization) </strong></p><p><strong>Cantor 3 </strong></p><p><strong>( + cold rolling + recrystallization) </strong></p><p><strong>Dendritic growth </strong><br><strong>Annealing twin </strong></p><p><strong>100μm </strong><br><strong>100μm </strong></p><p><strong>5μm </strong></p><p><strong>Grain size :&nbsp;~ 97 μm </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>~ 107 μm </strong></li><li style="flex:1"><strong>~ 4 μm </strong></li></ul><p></p><p><strong>Seoul National University </strong></p><p><strong>Indentation test for toughness of cantor alloy </strong></p><p>. <strong>Test condition </strong></p><p>Loading rate : 0.3mm/min,&nbsp;Depth control : 100um,&nbsp;Zero index : 0.1kgf </p><p>. <strong>Normalized curve </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Cantor 2 </strong></li><li style="flex:1"><strong>Cantor 3 </strong></li></ul><p><strong>Cantor 1 </strong></p><p>2500 2000 1500 1000 <br>500 <br>2500 2000 1500 1000 <br>500 <br>2500 2000 1500 1000 <br>500 </p><p><strong>Cantor 1 </strong></p><ul style="display: flex;"><li style="flex:1"><strong>Cantor 2 </strong></li><li style="flex:1"><strong>Cantor 3 </strong></li></ul><p></p><p>0<br>0.0 <br>0<br>0.0 <br>0<br>0.0 </p><ul style="display: flex;"><li style="flex:1">0.1 </li><li style="flex:1">0.2 </li><li style="flex:1">0.3 </li><li style="flex:1">0.4 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">0.1 </li><li style="flex:1">0.2 </li><li style="flex:1">0.3 </li><li style="flex:1">0.4 </li><li style="flex:1">0.1 </li><li style="flex:1">0.2 </li><li style="flex:1">0.3 </li><li style="flex:1">0.4 </li></ul><p></p><p><strong>h/a </strong></p><ul style="display: flex;"><li style="flex:1"><strong>h/a </strong></li><li style="flex:1"><strong>h/a </strong></li></ul><p></p><p><strong>Seoul National University </strong></p><p><strong>Result of indentation test </strong></p><p>This work Ref </p><p><strong>260 240 </strong></p><p><strong>245 217 </strong></p><p><strong>220 200 </strong></p><p><strong>217 </strong></p><p><strong>Mpa·m</strong><sup style="top: -0.2802em;"><strong>1/2 </strong></sup></p><p><strong>200 </strong></p><p><strong>180 </strong><br><strong>0</strong></p><p><strong>Cantor3 </strong><br><strong>Cantor2 </strong><br><strong>Cantor1 </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Ave. </strong></li><li style="flex:1"><strong>Grain size </strong></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><strong>Kjc </strong></li><li style="flex:1"><strong>Test 1 </strong></li><li style="flex:1"><strong>Test 2 </strong></li><li style="flex:1"><strong>Test 3 </strong></li><li style="flex:1"><strong>Test 4 </strong></li></ul><p><strong>(Mpa·m</strong><sup style="top: -0.41em;"><strong>1/2 </strong></sup></p><p><strong>217 </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>)</strong></li><li style="flex:1"><strong>(μm) </strong></li></ul><p></p><p><strong>Ref. </strong></p><p></p><ul style="display: flex;"><li style="flex:1">-</li><li style="flex:1">-</li><li style="flex:1">-</li><li style="flex:1">-</li></ul><p></p><p><strong>~ 6 </strong></p><p>~ 97 <br>~ 107 </p><p><strong>~ 4 </strong><br><strong>Cantor1 Cantor2 Cantor3 </strong></p><p>229.913 195.559 230.931 <br>225.478 203.835 241.726 <br>204.192 198.548 254.396 <br>208.74 <br>203.291 252.385 </p><p><strong>217.0808 200.3083 244.8595 </strong></p><p><strong>Ref. and cantor3 which are similar processing condition show 12% deviation </strong></p><p><strong>Seoul National University </strong></p><p><strong>Strength of Ni-Fe-Cr systems </strong></p><p><em>H.S.Oh / ph.D graduation paper </em></p><p>1100 1000 <br>900 800 700 600 500 400 300 200 100 <br>0</p><p>V<sub style="top: 0.1397em;">36.8</sub>Ni<sub style="top: 0.14em;">63.2 </sub></p><p><strong>Ni Fe Cr&nbsp;(at%) </strong><br><strong>40 30 30 </strong></p><p><strong>add V5 add V10 </strong></p><p>1200 1000 <br>800 600 400 200 <br>0</p><p>~8.3 μm </p><p>CrCoNi (Acta Mater., 2017) </p><p>CrMnFeCoNi (Science, 2014) </p><p>~6.5 μm <br>~6 μm </p><p><strong>avg. grain size : 5.75 </strong></p><p><strong>μm </strong></p><p>(111) </p><p><strong>V5 </strong></p><p>(311) <br>(220) <br>(200) </p><p><strong>FCC phase </strong></p><p>10 </p><p>1.00 1.25 1.50 1.75 2.00 2.25 d-spacing (A) </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">5</li><li style="flex:1">15 </li><li style="flex:1">20 </li><li style="flex:1">25 </li><li style="flex:1">30 </li><li style="flex:1">35 </li><li style="flex:1">40 </li><li style="flex:1">45 </li><li style="flex:1">50 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">10 </li><li style="flex:1">20 </li><li style="flex:1">30 </li><li style="flex:1">40 </li><li style="flex:1">50 </li><li style="flex:1">60 </li></ul><p></p><p><strong>strain (%) </strong></p><p>Engineering strain (%) </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>at% </strong></li><li style="flex:1"><strong>Y.S (MPa) </strong></li><li style="flex:1"><strong>U.T.S (MPa) </strong></li><li style="flex:1"><strong>Elongation (%) </strong></li><li style="flex:1"><strong>Grain size (μm) </strong></li></ul><p><strong>Cantor CoCrNi </strong><br><strong>NiV </strong><br><strong>331.96 </strong><br><strong>452.9 </strong><br><strong>693.49 927.36 </strong><br><strong>1174.05 </strong><br><strong>736.8 </strong><br><strong>41.3 </strong><br><strong>45.21 44.53 </strong><br><strong>28.3 </strong><br><strong>~ 6 </strong><br><strong>~ 6.5 ~ 8.3 </strong><br><strong>~ 3.65 </strong><br><strong>743.49 </strong><br><strong>470.2 </strong></p><p><strong>Ni</strong><sub style="top: 0.2201em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2201em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2201em;"><strong>30 </strong></sub></p><p><strong>Ni</strong><sub style="top: 0.2196em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2196em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2196em;"><strong>25</strong></sub><strong>V</strong><sub style="top: 0.2196em;"><strong>5 </strong></sub><strong>Ni</strong><sub style="top: 0.2196em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2196em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2196em;"><strong>20</strong></sub><strong>V</strong><sub style="top: 0.2196em;"><strong>10 </strong></sub><br><strong>476.4 682.7 </strong><br><strong>785.7 954.7 </strong><br><strong>28.6 19.4 </strong><br><strong>~ 4.18 ~ 5.75 </strong></p><p><strong>Seoul National University </strong></p><p><strong>Heat treatment of specimen </strong></p><p><strong>1</strong><br><strong>2</strong><br><strong>3</strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Heat treatment </strong></li><li style="flex:1"><strong>Phase </strong></li><li style="flex:1"><strong>Grain size (μm) </strong></li></ul><p><strong>1</strong></p><p><strong>234</strong><br><strong>Ni</strong><sub style="top: 0.1301em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.1301em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.1301em;"><strong>30 </strong></sub><strong>_1 Ni</strong><sub style="top: 0.1304em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.1304em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.1304em;"><strong>30 </strong></sub><strong>_3 </strong></p><p></p><ul style="display: flex;"><li style="flex:1">FCC </li><li style="flex:1">-</li></ul><p>As-cast </p><p>homogenization + Cold rolling + Recrystallization <br>FCC FCC FCC <br>~ 3.7 <br>-</p><p><strong>Ni</strong><sub style="top: 0.1304em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.1304em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.1304em;"><strong>20</strong></sub><strong>+V</strong><sub style="top: 0.1304em;"><strong>10 </strong></sub><strong>_1 Ni</strong><sub style="top: 0.1304em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.1304em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.1304em;"><strong>20</strong></sub><strong>+V</strong><sub style="top: 0.1304em;"><strong>10 </strong></sub><strong>_3 </strong></p><p>As-cast homogenization + Cold rolling + Recrystallization <br>~ 4 </p><p><strong>Seoul National University </strong></p><p><strong>Fracture toughness and tensile property </strong></p><p></p><ul style="display: flex;"><li style="flex:1">. <strong>Yield Strength vs Fracture toughness </strong></li><li style="flex:1">. <strong>Ductility vs Fracture toughness </strong></li></ul><p></p><p>800 </p><p>50 40 30 20 10 </p><p><strong>V</strong><sub style="top: 0.2em;"><strong>36.8</strong></sub><strong>Ni</strong><sub style="top: 0.2em;"><strong>63.2 </strong></sub></p><p>700 </p><p><strong>Ni</strong><sub style="top: 0.2em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2em;"><strong>20</strong></sub><strong>V</strong><sub style="top: 0.2em;"><strong>10 </strong></sub></p><p><strong>CoCrNi </strong></p><p><strong>V</strong><sub style="top: 0.2em;"><strong>36.8</strong></sub><strong>Ni</strong><sub style="top: 0.2em;"><strong>63.2 </strong></sub></p><p>600 </p><p><strong>Cantor </strong></p><p>500 </p><p><strong>Ni</strong><sub style="top: 0.2em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2em;"><strong>25</strong></sub><strong>V</strong><sub style="top: 0.2em;"><strong>5 </strong></sub></p><p><strong>CoCrNi </strong></p><p><strong>Ni</strong><sub style="top: 0.2em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2em;"><strong>25</strong></sub><strong>V</strong><sub style="top: 0.2em;"><strong>5 </strong></sub><br><strong>Ni</strong><sub style="top: 0.2em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2em;"><strong>30 </strong></sub><br><strong>Ni</strong><sub style="top: 0.2em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2em;"><strong>30 </strong></sub></p><p>400 </p><p><strong>Ni</strong><sub style="top: 0.2em;"><strong>40</strong></sub><strong>Fe</strong><sub style="top: 0.2em;"><strong>30</strong></sub><strong>Cr</strong><sub style="top: 0.2em;"><strong>20</strong></sub><strong>V</strong><sub style="top: 0.2em;"><strong>10 </strong></sub></p><p><strong>Cantor </strong></p><p>300 </p><ul style="display: flex;"><li style="flex:1">200 </li><li style="flex:1">250 </li><li style="flex:1">300 </li><li style="flex:1">350 </li><li style="flex:1">400 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">250 </li><li style="flex:1">300 </li><li style="flex:1">350 </li><li style="flex:1">400 </li></ul><p></p><p><strong>Fracture toughness </strong></p><p><strong>Fracture toughness </strong></p><p><strong>Fracture toughness through IIT yield strength에 의한 영향이 더 큰 것으로 보임. </strong></p><p><strong>Grain size effect on fracture toughness </strong></p><p><strong>260 </strong></p><p>This work </p><p><strong>250 240 230 220 210 200 190 </strong></p><p></p><ul style="display: flex;"><li style="flex:1">0.0 </li><li style="flex:1">0.1 </li><li style="flex:1">0.2 </li><li style="flex:1">0.3 </li></ul><p></p><p>1 / Grain size(um) </p><p><strong>Grain size 가 작아질 수록 Fracture toughness 가 증가하는 것으로 보임. </strong></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us