A Unit Selection Text-To-Speech-And-Singing Synthesis Framework from Neutral Speech: Proof of Concept 39 II.1 Introduction

A Unit Selection Text-To-Speech-And-Singing Synthesis Framework from Neutral Speech: Proof of Concept 39 II.1 Introduction

Adding expressiveness to unit selection speech synthesis and to numerical voice production 90) - 02 - Marc Freixes Guerreiro http://hdl.handle.net/10803/672066 Generalitat 472 (28 de Catalunya núm. Rgtre. Fund. ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de ió la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual undac F (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. Universitat Ramon Llull Universitat Ramon ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la G: 59069740 G: . persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras C.I.F formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices. WARNING . The access to the contents of this doctoral thesis and its use must respect the rights of the author. It can be used for reference or private study, as well as research and learning activities or materials in the terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis and its abstracts and indexes. C. Claravall, 1-3 | 08022 Barcelona | Tel. 93 602 22 00 | Fax 93 602 22 49 | [email protected] | www.url.edu 90) - 02 - DOCTORAL THESIS Generalitat 472 (28 de Catalunya núm. Title Adding expressiveness to unit selection speech synthesis and to numerical voice production Rgtre. Fund. Fundació Presented by Marc Freixes Guerreiro Universitat Ramon Llull Universitat Ramon Centre La Salle International School of Commerce and Digital Economy G: 59069740 G: . Department Engineering C.I.F Directed by Dr. Francesc Alías Dr. Joan Claudi Socoró C. Claravall, 1-3 | 08022 Barcelona | Tel. 93 602 22 00 | Fax 93 602 22 49 | [email protected] | www.url.edu Abstract Speech is one of the most natural and direct forms of communication between human beings, as it codifies both a message and paralinguistic cues about the emotional state of the speaker, its mood, or its intention, thus becoming instrumental in pursuing a more natural Human Computer Interaction(HCI). In this context, the generation of expressive speech for the HCI output channel is a key element in the development of assistive technologies or personal assistants among other applications. Synthetic speech can be generated from recorded speech using corpus-based methods such as Unit-Selection(US), which can achieve high quality results but whose expressiveness is restricted to that available in the speech corpus. In order to improve the quality of the synthesis output, the current trend is to build ever larger speech databases, especially following the so-called End-to-End synthesis approach based on deep learning techniques. However, recording ad-hoc corpora for each and every desired expressive style can be extremely costly, or even unfeasible if the speaker is unable to properly perform the styles required for a given application (e.g., singing in the storytelling domain). Alternatively, new methods based on the physics of voice production have been developed in the last decade thanks to the increase in computing power. For instance, vowels or diphthongs can be obtained using the Finite Element Method(FEM) to simulate the propagation of acoustic waves through a 3D realistic vocal tract geometry obtained from Magnetic Resonance Imaging(MRI). However, since the main efforts in these numerical voice production methods have been focused on improving the modelling of the voice generation process, little attention has been paid to its expressiveness up to now. Furthermore, the collection of data for such simulations is very costly, besides requiring manual time-consuming postprocessing like that needed to extract 3D vocal tract geometries from MRI. The aim of the thesis is to add expressiveness into a system that generates neutral voice, without having to acquire expressive data from the original speaker. One the one hand, expressive capabilities are added to a Unit-Selection Text-to-Speech(US-TTS) system fed with a neutral speech corpus, to address specific and timely needs in the storytelling domain, such as for singing or in suspenseful situations. To this end, speech is parameterised using a harmonic-based model and subsequently transformed to the target expressive style according to an expert system. A first approach dealing with the synthesis of storytelling increasing suspense shows the viability of the proposal in terms of naturalness and storytelling quality. Singing capabilities are also added to theUS-TTS system through the integration of Speech-to-Singing(STS) transformation modules into the TTS pipeline, and by incorporating an expressive prosody generation module that allows theUS to select units closer to the target singing prosody obtained from the input score. This results in a Unit Selection based Text-to-Speech-and-Singing(US-TTS&S) synthesis framework that can generate both speech i Abstract and singing from the same neutral speech small corpus (∼2.6 h). According to the objective results, the score-drivenUS strategy can reduce the pitch scaling factors required to produce singing from the selected spoken units, but its effectiveness is limited regarding the time-scale requirements due to the short duration of the spoken vowels. Results from the perceptual tests show that although the obtained naturalness is obviously far from that given by a professional singing synthesiser, the framework can address eventual singing needs for synthetic storytelling with a reasonable quality. The incorporation of expressiveness is also investigated in the 3D FEM-based numerical simulation of vowels through modifications of the glottal flow signals following a source-filter approach of voice production. These signals are generated using a Liljencrants-Fant(LF) model controlled with the glottal shape parameter Rd, which allows exploring the tense-lax continuum of phonation besides the spoken vocal range of fundamental frequency values, F 0. The contribution of the glottal source to higher order modes in the FEM synthesis of cardinal vowels [a], [i] and [u] is analysed through the comparison of the High Frequency Energy(HFE) values obtained with realistic and simplified 3D geometries of the vocal tract. The simulations indicate that higher order modes are expected to be perceptually relevant according to reference values stated in the literature, particularly for tense phonations and/or high F 0s. Conversely, vowels with a lax phonation and/or low F 0s can result in inaudible HFE levels, especially if aspiration noise is not present in the glottal source. After this preliminary study, the excitation characteristics of happy and aggressive vowels from a Spanish parallel speech corpus are analysed with the aim of incorporating this tense voice expressive styles into the numerical production of voice. To that effect, the GlottDNN vocoder is used to analyse F 0 and spectral tilt variations associated with the glottal excitation on vowels [a]. These variations are mapped through the comparison with synthetic vowels into F 0 and Rd values to simulate vowels resembling happy and aggressive styles. Results show that it is necessary to increase F 0 and decrease Rd with respect to neutral speech, with larger variations for happy than aggressive style, especially for the stressed [a] vowels. The results achieved in the conducted investigations validate the possibility of adding expressiveness to both corpus-based US-TTS synthesis and FEM-based numerical simulation of voice. Nevertheless, there is still room for improvement. For instance, the strategy applied to the numerical voice production could be improved by studying and developing inverse filtering approaches as well as incorporating modifications of the vocal tract, whereas the developed US-TTS&S framework could benefit from advances in voice transformation techniques including voice quality modifications, taking advantage of the experience gained in the numerical simulation of expressive vowels. ii Acknowledgements Voldria començar amb unes paraules d’agraïment pels meus directors de tesi.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    147 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us