Aus dem Institut für Veterinär-Physiologie des Fachbereichs Veterinärmedizin der Freien Universität Berlin Interactions of zinc with the intestinal epithelium - effects on transport properties and zinc homeostasis Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien U niversität Berlin vorgelegt von Eva-Maria Näser, geb. Gefeller Tierärztin aus Kassel Berlin 2015 Journal-Nr.: 3813 Gefördert durch die Deutsche Forschungsgemeinschaft und die H.W. Schaumann Stiftung Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Univ.-Prof. Dr. Jörg Rudolf Aschenbach Zweiter Gutachter: Prof. Dr. Holger Martens Dritter Gutachter: Prof. Dr. Robert Klopfleisch Deskriptoren (nach CAB-Thesaurus): pigs, weaning, zinc, intestines, epithelium, jejunum, ion transport Tag der Promotion: 15.09.2015 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. ISBN: 978-3-86387-656-2 Zugl.: Berlin, Freie Univ., Diss., 2015 Dissertation, Freie Universität Berlin D 188 Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen, usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürfen. This document is protected by copyright law. No part of this document may be reproduced in any form by any means without prior written authorization of the publisher. Alle Rechte vorbehalten | all rights reserved © Mensch und Buch Verlag 2015 Choriner Str. 85 - 10119 Berlin [email protected] – www.menschundbuch.de Für Oliver, Kilian und Elena 5 Table of contents Table of contents List of Abbreviations 7 Chapter 1: Introduction 9 Chapter 2: Literature review 11 Physiological and pathophysiological aspects of zinc 11 Zinc in piglet nutrition 12 Effect of zinc on intestinal epithelial transport properties 15 Effect of zinc on chloride secretion in the intestine and diarrhea 15 Effect of zinc on absorptive transport in the intestine 16 Zinc transport and mechanisms to regulate zinc homeostasis 18 Chapter 3: Aims and Objectives of the Thesis 22 Chapter 4: Effects of Age and Zinc Supplementation on Transport Properties in the Jejunum of Piglets 24 3.1. Introduction 3.2. Material and Methods 3.3. Results 3.4. Discussion Chapter 5: Effects of zinc supplementation on intracellular zinc concentration and zinc homeostasis and its regulation in intestinal epithelial cells 36 4.1. Introduction 4.2. Material and Methods 4.3. Results 4.4. Discussion Chapter 6: Discussion 49 6 Table of contents Summary/ Zusammenfassung 61 References 65 Publikationsliste 77 Danksagung 79 Eidesstattliche Erklärung 81 List of Abbreviations 7 List of Abbreviations AE Acrodermatitis Enteropathica AGP Antibiotic Growth Promoters ASC Amino Acid Transporter ATP Adenosine Triphosphate Caco-2 Human Epithelial Colorectal Adenocarcinoma Cells cAMP Cyclic Adenosine Monophosphate CFTR Cystic Fibrosis Transmembrane Conductance Regulator cGMP Cyclic Guanosine Monophosphate CXCL2α Macrophage Inflammatory Protein-2-alpha ETEC Enterotoxigenic E. coli GLUT2 Glucose Transporter 2 HeLa Cervical Cancer Cells (derived from Henrietta Lacks) Hsp Heatshock Protein IPEC-J2 Intestinal Porcine Epithelial Cell Line J2 LDH Lactate Dehydrogenase MT Metallothionein MTF-1 Metal-response Element Binding Transcription Factor-1 MUC4 Mucin 4 NHE3 Sodium-Hydrogen Exchanger 3 NKCC1 Sodium-Potassium-2 Chloride Cotransporter PWD Post-Weaning Diarrhoea SCFA Short Chain Fatty Acids SGLT1 Sodium-/Glucose-Linked Co-Transporter 1 STp E. coli heat-stable Enterotoxin VIP Vasoactive Intestinal Peptide ZIP Zrt-, Irt-like Protein Family (SLC39A) ZIP4 Zinc Transporter SLC39A4 ZnT Zinc Transport Protein Family (SLC30A) ZnT1 Zinc Transporter SLC30A1 5-HT Serotonin Chapter 1: Introduction 9 Chapter 1: Introduction Weaning is a crucial phase in modern pig production systems and a stressful event for the piglets (Martinez-Puig et al. 2007). The separation from the sow and the switch of the diet from milk to cereal-based diets are serious stress factors for the animals (Pluske et al. 1997). The intestinal immunological protection, previously generated by the sow’s milk, fades away while the piglet’s own immunity is not yet completely established (Blecha 1998). Regarding the intestinal barrier function, it is disturbed after weaning as the villous surface is reduced also implying a reduction in the absorptive capacity of the intestine (Wijtten et al. 2011). Thus, the piglet is temporarily affected by malabsorption and a nutritional undersupply (Nabuurs et al. 1996; Nabuurs 1998). This frequently results in infections by intestinal pathogens and the emergence of “post-weaning diarrhoea” (PWD). Decreased daily weight gain attributable to serious losses of electrolytes and water and increased piglet mortality are the consequences (Heo et al. 2013). For many years, antibiotic growth promoters (AGP) have been used because of their positive effects on piglet performance, such as daily feed intake and weight gain (Broom et al. 2006). Since their ban within the EU in January 2006, the search for alternatives in the prevention of PWD has become essential and natural feed additives have been introduced with the expectation of evolving similar effects to those of AGP previously. In addition to specific enzymes, organic acids or probiotic compositions, zinc has particularly been used as an in-feed alternative to AGP. It is frequently applied as zinc oxide (ZnO), zinc sulfate (ZnSO4) or zinc chloride (ZnCl2) in high doses above the dietary requirements during the postweaning phase. The effects of these pharmacological zinc concentrations on piglet performance (Hill et al. 2001; Broom et al. 2006; Martin et al. 2013b), intestinal barrier functions (Rohweder et al. 1998; Sturniolo et al. 2002; Zhang and Guo 2009b), and bacterial populations (Fiteau and Tomkins 1994; Walsh et al. 1994; Bednorz et al. 2013) have widely been studied, whereas investigations concerning its immediate effects at the intestinal epithelium, in particular on absorptive and secretory transport processes, have mostly resulted in contradictory findings (Lee et al. 1989; Rodriguez-Yoldi et al. 1994; Carlson et al. 2004; Hoque et al. 2005; Feng et al. 2006; Carlson et al. 2008). Furthermore, the available results are difficult to compare because of differences in the applied zinc concentration, the age of the piglets/maturity of the intestinal cells or the duration of the zinc supplementation. Knowledge concerning the effects of zinc on absorptive transport properties is, on the one hand, important with regard to the uptake of nutrients into the organism, especially during weaning when absorption is generally reduced (Wijtten et al. 2011). 10 Chapter 1: Introduction On the other hand, the influence of zinc on the secretory capacity of the intestinal epithelium is of similar importance because secretion essentially determines the severity of diarrheal disease. Thus, this thesis has focussed on the effects of dietary zinc administration on absorptive and secretory transport properties in the small intestinal epithelium of weaned piglets ex vivo after chronic or acute application of zinc and, furthermore, on the homeostatic mechanisms, barrier effects, and potential toxic effects that occur in intestinal epithelial cells in vitro when the extracellular zinc concentration is elevated. Chapter 2: Literature review 11 Chapter 2: Literature review Physiological and pathophysiological aspects of zinc: Zinc is an essential trace element in the body of mammals and is involved in a variety of general cellular functions (Vallee and Falchuk 1993) and in the metabolism of nutrients (Hutterer 2006). It has multitudinous effects on the growth and development of the organism and on immune and nervous functions (Semrad 1999). As a regulatory, catalytic, and structural component, it regulates the activity of enzymes, transcription factors, and signaling molecules (Yamasaki et al. 2007). It modulates the stability of cell membranes by reducing peroxidative damage (Srivastava et al. 1995) and gives protection against the disruption of cells (Hennig et al. 1993) by maintaining the structure and function of the membrane barrier in several tissues (Rodriguez et al. 1996; Sturniolo et al. 2001; Lambert et al. 2004; Bao and Knoell 2006). The ubiquitous functions of zinc within the organism suggests that a deficiency or excess of zinc might lead to a generalized impairment of various metabolic functions (Hambidge 2000). In zinc-deficient states, animals and humans have shown an increased susceptibility towards the structural and functional impairment of several organ systems, such as the epidermal, central nervous, and immune systems and, not at least, the intestinal tract (Hambidge and Walravens 1982). Clinical symptoms include anaemia, loss of appetite, reduced growth, immune
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages58 Page
-
File Size-