
<p>37<sup style="top: -0.55em;">TH </sup>RD50 Workshop </p><p>A comprehensive MIP measurement & </p><p>analysis system </p><p>Evangelos –Leonidas Gkougkousis </p><p>CERN, EP-R&D WG 1.1: Hybride Pixel Detectors </p><p><strong>Geneva – November 19</strong><sup style="top: -0.5em;"><strong>th</strong></sup><strong>, 2020 </strong></p><p><strong>Mechanics </strong></p><p></p><ul style="display: flex;"><li style="flex:1">Spacers </li><li style="flex:1">M4x20 screws </li></ul><p></p><p>General Overview </p><p><strong>All parts in transit </strong></p><p><strong>from CERN since last </strong><br><strong>Friday </strong></p><p>source container source support back </p><p>Trigger <br>DUT </p><p>source support </p><p>front </p><p>Aluminum support </p><p>assembly (reduced size) baseplate </p><p>20 / 11 / 2020 <br>E. L. Gkougkousis </p><p>2</p><p><strong>Mechanics </strong></p><p><a href="/goto?url=https://twiki.cern.ch/twiki/bin/view/Main/HGTDSensorTesting#Mechanics" target="_blank"><strong>https://twiki.cern.ch/twiki/bin/view/Main/HGTDSensorTesting#Mechanics </strong></a></p><p>Individual Pieces </p><p>•</p><p>•</p><p>•</p><p>Assembled on aluminum breadboard base </p><p>M5 tapped hole grid, 15 mm </p><p>spacing 10 mm thickness recommended for stability </p><p>Specifications </p><p></p><ul style="display: flex;"><li style="flex:1">Outer dimensions </li><li style="flex:1">250 x 220 x 10 mm </li></ul><p>Aluminum </p><p>M5 </p><p>Material </p><p>Grid type </p><p>Grid size Grid spacing <br>16 X 14 15 mm </p><ul style="display: flex;"><li style="flex:1">12.5 mm </li><li style="flex:1">Distance form grid end to edge </li></ul><p></p><p><strong>+</strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>+</strong></li><li style="flex:1"><strong>=</strong></li></ul><p></p><p>••</p><p>•</p><p>•</p><p>3-piece aluminum L-shaped support frame for board alignment and mounting M5 screws used for fixing to baseplate & mount sensor board to the frame </p><p>165 mm x 120 mm outer dimentions </p><p>2xM5, 10 mm nuts per board mounting hole as spacers. </p><p>•••</p><p>•</p><p>••</p><p>2-pice support designed for CERN sources Encapsulates an L-frame plane support 3D printed piece </p><p>ABS with a 99% fill factor for mechanical stability </p><p>Non-metallic parts to avoid bremsstrahlung Assures correct alignment with boards and sensors </p><p><strong>+</strong></p><p>20 / 11 / 2020 </p><p>3</p><p>E. L. Gkougkousis </p><p><strong>Electronics </strong></p><p>1<sup style="top: -0.6em;">st </sup>Stage Amplifier </p><p>••</p><p>Electronics based on UCSC single channel board High frequency SiGe (~2GHz) common emitter first stage charge amplifier (470 Ohm trans-impedance) Based on Iminium transistor (V<sub style="top: 0.28em;">cc </sub>>1.25V) with well calibrated gain to voltage ratio </p><p>••••</p><p>1.8 mm 4-layer FRP architecture with buried signal layer SMA calibration inputs and dielectric impedance test 2.25 V input, ~17 mA </p><p></p><p>Estimated gain of 10 Extremely fast shaping time (< 1 ns) </p><p></p><p>Bandwidth limited </p><p>(especially at low frequencies) </p><p></p><p>Relative expensive No hot-swap available High leakage current because of heavy </p><p>decoupling </p><p>Reworked area, ground contract </p><p>Double Amplifier Calibration input input capacitor diode capacitor (missing) assembly (replaced </p><p></p><p>Integrated low pass filtering at HV, LV side with limited cut-off </p><p>(removed) </p><p>)</p><p><a href="/goto?url=https://twiki.cern.ch/twiki/bin/view/Main/HGTDSensorTesting#Second_Stage_Amplifier" target="_blank"><strong>https://twiki.cern.ch/twiki/bin/view/Main/HGTDSensorTesting#Second_Stage_Amplifier </strong></a></p><p>20 / 11 / 2020 </p><p>4</p><p>E. L. Gkougkousis </p><p><strong>Electronics </strong></p><p>2<sup style="top: -0.6em;">nd </sup>Stage Amplifier </p><p><a href="/goto?url=https://twiki.cern.ch/twiki/bin/view/Main/LgadSecondStage" target="_blank"><strong>https://twiki.cern.ch/twiki/bin/view/Main/LgadSecondStage </strong></a></p><p>•</p><p>Mini-Circuits integrated GALI-52 Voltage amplifier on </p><p>test board </p><p>•••••</p><p>Gallium Phosphate technology with 2GHz bandwidth 15.5 dB at 50 Ohm matched impedance 0.64 dB insertion loses at 1 GHz Supply Voltage: 12 +/- 0.2 V Supply current: 60 +/- 10 mA </p><p>•</p><p>•••</p><p>Amplifier directly mounted to Readout board </p><p>Aluminum shield cover with M1.2 screws for shielding Outer dimensions 36 x 40 mm SMA to SMA connector (18 GHz cut-off), rated at 1.5kV </p><p><a href="/goto?url=https://twiki.cern.ch/twiki/bin/view/Main/LgadCables" target="_blank"><strong>https://twiki.cern.ch/twiki/bin/view/Main/LgadCables </strong></a></p><p>Cables and connectors </p><p>•</p><p>Direct SMA-BNC cables (no converters) for signal, HV and LV </p><p>•••</p><p>50 Ohm, 20 GHz, RG-174 standard with 2m max length Thin Coaxial cooper shielded cables, PTFE insulation 100 dB/m shielding effectiveness with 3kV operating voltage (HYTEM <a href="/goto?url=https://twiki.cern.ch/twiki/bin/edit/Main/HY402FLEX?topicparent=Main.LgadCables;nowysiwyg=1" target="_blank">HY402FLEX</a>) </p><p>•</p><p>banana-BNC converters at the HV and LV side </p><p>20 / 11 / 2020 </p><p>5</p><p>E. L. Gkougkousis </p><p>•<strong>Environmental Expander (EnviE) </strong></p><p><a href="/goto?url=https://gitlab.cern.ch/egkougko/environemental-monitoring-expander-envie" target="_blank"><strong>https://gitlab.cern.ch/egkougko/environemental-monitoring-expander-envie </strong></a></p><p>•</p><p>Based on an ESP8266 microcontroller with integrated 10- </p><p>bit ADC, I2C and WiFi 802.11b </p><p>•••••</p><p>•</p><p>Integrated OLED 128X64 pixel screen Base board 3 humidity and 5 temperature channels High precision voltage dividers and sensor decoupling ARDUINO / LoUA core based Temperature resolution of 0.8 <sup style="top: -0.35em;">o</sup>C ± 0.06 % </p><p>Humidity resolution of 0.1 % across the range with </p><p>integrated temperature compensation </p><p>20 / 11 / 2020 </p><p>6</p><p>E. L. Gkougkousis </p><p><strong>Assembly </strong></p><p>Absorbers – Shields </p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">90 </li><li style="flex:1">90 </li></ul><p>40 </p><p><sub style="top: 0.34em;">3</sub><sup style="top: -0.58em;">90</sup><sub style="top: 0.34em;">8</sub>푆푟 →<sup style="top: -0.55em;">푒 </sup><sub style="top: 0.34em;">39</sub>푌 →<sup style="top: -0.55em;">푒 </sup></p><p>푍푟 </p><p>50mm x 50mm tin plated metal shield covers on both sides </p><p>E<sub style="top: 0.28em;">max</sub>= 2.28 MeV <br>T<sub style="top: 0.28em;">1/2 </sub>= 64 h </p><p>E<sub style="top: 0.28em;">max</sub>= 0.46 MeV <br>T<sub style="top: 0.28em;">1/2 </sub>= 28,8 y </p><p> Multi-energetic electron spectrum <br> E<sub style="top: 0.32em;">max </sub>at 2.28MeV Average energy ~ 939 keV from </p><p><sup style="top: -0.4em;">90</sup>Y decay </p><p>300mm diameter circular openings at center of both front and back covers on top </p><p>of the sensor pad </p><p> Average energy ~ 188 keV from <br><sup style="top: -0.4em;">90</sup>Sr decay </p><p>30 μm thickness, 2 x 2 cm Al foil attached on both </p><p>openings </p><p>Low temperature Multi-metal solder (91% Tin 9% Zinc) </p><p>20 / 11 / 2020 </p><p>7</p><p>E. L. Gkougkousis </p><p><strong>Assembly </strong></p><p>Wire bonding </p><p></p><ul style="display: flex;"><li style="flex:1">TRD for temp. sensing </li><li style="flex:1">Gold plated dive-in pins </li><li style="flex:1">Assembled sensor </li></ul><p></p><p>• Wire bonds are to be kept to a minimum distance from sensor to reduce inductance </p><p>• Gold-plated dive-in pads required • Flatness of top sensor pad to be guaranteed </p><p>• Anisotropically conductive adhesive tape to attach sensor (3M155818-ND ) </p><p><a href="/goto?url=https://www.digikey.com/product-detail/en/3m-tc/3-4-5-9703/3M155818-" target="_blank">https://www.digikey.com/product-detail/en/3m-tc/3-4-5-9703/3M155818- </a><a href="/goto?url=https://www.digikey.com/product-detail/en/3m-tc/3-4-5-9703/3M155818-ND/3830765" target="_blank">ND/3830765 </a></p><p>20 / 11 / 2020 </p><p>8</p><p>E. L. Gkougkousis </p><p><strong>Functional Setups </strong></p><p>Schematics </p><p><strong>Board type </strong></p><p>Channels </p><p><strong>Sampic </strong></p><p>16 </p><p><strong>LeCroy WR </strong></p><p>4<br>Sampling Rate Impedance <br>8.4Gs/sec <br>50 Ω <br>20 Gs/sec <br>50 Ω <br>MCX, SMA, USB, Ethernet <br>BNC, USB, GPIB slave <br>Connectors </p><p>Bandwidth </p><p>Resolution </p><p></p><ul style="display: flex;"><li style="flex:1">1.6GHz </li><li style="flex:1">5GHz </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">8 – 11 bit </li><li style="flex:1">8 bit (11 tough fit) </li></ul><p></p><p>Dynamic </p><p>Range </p><p>Scale </p><p>dependent <br>1V </p><p>20 / 11 / 2020 </p><p>9</p><p>E. L. Gkougkousis </p><p><strong>Functional Setups </strong></p><p>Location, Location, Location </p><p>DAQ & control PC <br>HV 1 – Keithley 2410 </p><p>4-channel LV HMP4040 <br>Climate Chamber (Binder MK-115) <br>HV 2 – Keithley 2410 </p><p>28/2/-020 </p><p>40 Gs Oscilloscope </p><p>(Agilent Infinium) <br>Timing boards </p><p>Second Stage amplifiers </p><p>20 / 11 / 2020 </p><p>10 </p><p>E. L. Gkougkousis </p><p><strong>Functional Setups </strong></p><p>Location, Location, Location </p><p> Replicate the lab setup at Previssin Use of an “Abandoned” iTk climate chamber Replace all infrastructure, mechanical supports and instruments Take care of Sr90 source (34 MBq) and RP procedures Software installation, configuration and testing Dry air provided from central circuit </p><p>20 / 11 / 2020 </p><p>11 </p><p>E. L. Gkougkousis </p><p><strong>DAQ Software </strong></p><p>Current supported Instrument Library </p><p><strong>Supported Oscilloscopes </strong></p><p>Sampic Series v2.0 <br>(16 ch version) </p><p></p><ul style="display: flex;"><li style="flex:1">TDS5000 series </li><li style="flex:1">WaveRunner </li></ul><p>series <br>Infinium DS08000 series </p><p> Under Integration <br> Compatible with models form the same family, may require minor adjustments if use of different model of one of the supported brands </p><p><strong>Supported Climate Chambers </strong></p><p></p><ul style="display: flex;"><li style="flex:1">Votsch VT4002 </li><li style="flex:1">Votsch VT4002 EM </li></ul><p>+ Air input </p><ul style="display: flex;"><li style="flex:1">Votsch VC2020 </li><li style="flex:1">Binder MK53 </li><li style="flex:1">Binder MK115 </li></ul><p></p><p> Many more can be added, need to create a LabVIEW library for your model </p><p>20 / 11 / 2020 </p><p>12 </p><p>E. L. Gkougkousis </p><p><strong>DAQ Software </strong></p><p>Current supported Instrument Library </p><p><strong>High voltage </strong></p><p><strong>Supported Low Voltage Power supplies </strong></p><p></p><ul style="display: flex;"><li style="flex:1">363X series 364X series </li><li style="flex:1">HMP4040 </li><li style="flex:1">PL330DP </li></ul><p>2400 / 2410 </p><p> Multiple models supported from these series </p><p> Units supported at any combination with a maximum of 4 </p><p> Will not support CAEN </p><p> Plans include support for </p><ul style="display: flex;"><li style="flex:1">2600 series electrometers </li><li style="flex:1">channels </li></ul><p></p><p>How does multi – instrument support work? </p><p> Completely transparent for end user </p><p> Selection of instrument through drop-down menus UI adapts to selected instrument (<strong>polymorphism</strong>) </p><p> <strong>Acquired data have a single unique format (no matter which oscilloscope used) </strong></p><p> Customized commands and libraries used in each case </p><p> <strong>New instrument integration easy through use of separated dedicated libraries </strong></p><p>20 / 11 / 2020 </p><p>13 </p><p>E. L. Gkougkousis </p><p><strong>1</strong></p><p><strong>DAQ Software </strong></p><p>General Interface </p><p> Tab interface organized in 4 sections: </p><p>I. HV Control, V-I recording and visualization </p><p><strong>2</strong></p><p>II. Low Voltage and temperature </p><p>control <br>III. Oscilloscope and triggering mode control </p><p>IV. Charged particle and auto-trigger </p><p>sequencing and programming </p><p> Multiple supported instruments with <strong>adaptive </strong></p><p><strong>3</strong><br><strong>4</strong></p><p><strong>polymorphic UI </strong></p><p> Integrated error </p><p>handling and quai-full proof operation () </p><p>20 / 11 / 2020 </p><p>14 </p><p>E. L. Gkougkousis </p><p><strong>DAQ Software </strong></p><p>Event Preview </p><p> Real-time Waveform Visualization Dynamically enabled / only visible during data taking Available for LeCroy, Tektronix and Agilent oscilloscopes Holds last acquired waveform in case of error Re-initialization at program start-up Eliminate need to remotely access oscilloscope GUI </p><p>20 / 11 / 2020 </p><p>15 </p><p>E. L. Gkougkousis </p><p><strong>DAQ Software </strong></p><p>HV Control and Monitoring </p><p><strong>HV PSU model select </strong><br><strong>1</strong><sup style="top: -0.35em;"><strong>st </strong></sup><strong>HV channel control panel </strong></p><p><strong>2</strong><sup style="top: -0.35em;"><strong>nd </strong></sup><strong>HV channel control </strong></p><p><strong>panel </strong></p><p>Filename to save data </p><p>(asci format, tab separated .txt) </p><p><strong>Voltage/Time graph </strong></p><p>(15 days implemented buffer size, </p><p>reset afterwards) </p><p><strong>Current/Time graph </strong></p><p>(15 days implemented buffer size, reset afterwards) </p><p>20 / 11 / 2020 </p><p>16 </p><p>E. L. Gkougkousis </p><p><strong>DAQ Software </strong></p><p>HV Control and Monitoring </p><p><strong>Data Logging: </strong>Current, Voltage and their uncertainties are </p><p>recorded in a vertical line separated </p><p>ASCII file. <strong>ONLY </strong>active channel </p><p>recorded. Automatic start/Stop upon HV activation. </p><p><strong>Example from output file: </strong></p><p>•</p><p>•</p><p>••</p><p>Default directory : /system/user/ </p><p>Data append existing file </p><p>File created at HV power on Record only value variations to limit data size </p><p></p><ul style="display: flex;"><li style="flex:1">channel </li><li style="flex:1">voltage current </li><li style="flex:1">date </li><li style="flex:1">time </li></ul><p></p><ul style="display: flex;"><li style="flex:1">δV </li><li style="flex:1">δI </li></ul><p></p><p><strong>IVs: </strong>Simultaneously plotting both channel voltage and current vs time. Start automatically once at least one </p><p>channel turned on. Auto scaling time </p><p>axis. 15 day buffer for continues running. </p><p>20 / 11 / 2020 </p><p>17 </p><p>E. L. Gkougkousis </p><p><strong>DAQ Software </strong></p><p><strong>Agilent 363x + 364x </strong></p><p>Temperature and LV control </p><p><strong>Hameg HMP404 </strong><br><strong>2 x Agilent 364x </strong></p><p><strong>LV Selection menu </strong></p><p><strong>2 x Agilent 363x </strong></p><p><strong>Votsh VT4002 No Air / VC2020 </strong><br><strong>Votsh VT4002 Air </strong></p><p><strong>Climate chamber selection menu </strong></p><p><strong>Binder MK53 </strong></p><p>20 / 11 / 2020 </p><p>18 </p><p>E. L. Gkougkousis </p><p><strong>DAQ Software </strong></p><p>Oscilloscope Control </p><p><strong>Oscilloscope model select </strong><br><strong>Oscilloscope settings </strong></p><p><strong>control panel </strong></p><p>Timing and vertical scale control for up to 4 oscilloscope channels </p><p><strong>Triggering Mode select </strong></p><p>Coincidence trigger with multichannel logic or single channel edge trigger configuration </p><p>20 / 11 / 2020 </p><p>19 </p><p>E. L. Gkougkousis </p><p><strong>DAQ Software </strong></p><p>Oscilloscope Control – Channel Settings </p><p><strong>Com. Interface: </strong>Sets the VISA port for the </p><p><strong>Oscilloscope type: </strong>Select one of the four supported oscilloscope types oscilloscope </p><p>configure </p><p>to </p><p>to work with. Dialog box disabled when </p><p>program running. </p><p><strong>Error: </strong>Error indicator will turn ON if communications fails, set parameters are out of range for instrument or instrument reports error. Turning panel OFF/ON clears error. </p><p><strong>Time-Base: </strong>Set time scale, time offset and memory depth in number of points. Sampling rate will be </p><p>adjusted to maximum value </p><p>for selected memory depth. <br><strong>Vertical setup: </strong>Voltage scale and offset, coupling, impedance bandwidth </p><p>attenuation settings. Enable / disable </p><p>channel trace. <strong>ONLY ENABLED </strong></p><p>channels are considered during data taking. <br>(when limit available), probe <br><strong>ON/OFF</strong>: To turn on or off the oscilloscope one needs to use the corresponding buttons at the trigger mode section. Then all parameters are </p><p>applied and the instrument is set to the </p><p>selected mode. and </p><p>20 / 11 / 2020 </p><p>20 </p><p>E. L. Gkougkousis </p><p><strong>DAQ Software </strong></p><p>Oscilloscope Control - Trigger </p><p><strong>Coincidence trigger </strong></p><p>• When initiated, all vertical and timing settings are applied in addition the logic </p><p>setting for the coincidence trigger. </p><p>• Edge trigger is disabled. • Continuously cycles and updates settings on the fly. • If stopped, last settings are left on instrument. </p><p><strong>OR </strong></p><p>• All channels set to active are displayed, regardless if they participate in the trigger condition. </p><p><strong>Edge trigger </strong></p><p> Only selected trigger channel is activated and its vertical and timing settings adjusted. <br> All other channels are deactivated. </p><p> Logic trigger is disabled while edge trigger is active </p><p> While active, cycles continuously with the instrument applying any setting modification on the fly. <br> When deactivated, last applied settings are let. </p><p>20 / 11 / 2020 </p><p>21 </p><p>E. L. Gkougkousis </p><p><strong>DAQ Software </strong></p><p>MIP Scans and Dark Rate </p><p><strong>MIP data Control </strong></p><p>Set temperatures, DUT and Trigger HV and number of events per point to be recorded. Each waveform is individually recorded and a folder structure is created </p><p><strong>Dark Rate Measurement </strong></p><p>Scans all voltages up to breakdown and produces a dark rate vs <br>Voltage measurements. Multiple temperatures can be sequenced automatically </p><p><strong>Dark rate vs Voltage plot </strong></p><p>20 / 11 / 2020 </p><p>22 </p><p>E. L. Gkougkousis </p><p><strong>DAQ Software </strong></p><p>MIP Sequential Measurement Roadmap </p><p>• A four state approach to guarantee stability and error management • Code execution falls back to previous step in case of error </p><p>Six preliminary sequential steps before we even start looking at the waveform </p><p>Temp, setup <br>(~2% of set point) </p><p>Low Voltage </p><p>Power ON </p><p>Climate chamber activation </p><p>Enable </p><p>dry air intake </p><p>Preliminary settings validation </p><p>Oscilloscope setup </p><p>Visualize and save waveforms </p><p>Query </p><p>oscilloscope for data </p><p>Deactivate dry air intake </p><p>Create appropriate </p><p>folder structure </p><p>Set HV values for both DUT and reference </p><p>Set new temp point </p><p>Continue until all points </p><p>Repeat data </p><p>cycle (step 2) </p><p>Turn HV off and wait for </p><p>0</p><p>Deactivate dry air </p><p>Activate </p><p>dry air </p><p>completed </p><p>Turn Low voltage off </p><p>Turn HV off and wait for <br>0</p><p>Tep. Left to last setpoint to protect irradiated sensors </p><p>Close oscilloscope connection </p><p>20 / 11 / 2020 </p><p>23 </p><p>E. L. Gkougkousis </p><p><strong>DAQ Software </strong></p><p>MIP data File structure </p><p>• User inputs a single directory for data saving • A folder structure is created per temp and voltage point </p><p>• Each waveform is waved in a separate file winthin the appropriate folder </p><p>• IV log file is register for the duration of measurements </p><p>One folder per temperature point </p><p>IV log file </p><p>Single folder per voltage point and per temperature </p><p>20 / 11 / 2020 </p><p>24 </p><p>E. L. Gkougkousis </p><p><strong>DAQ Software </strong></p><p>Dark Rate Measurement </p><p><strong>Dark Rate: </strong>Dark rate for each point is </p><p>defined as the average of the inverse of the time difference between two consecutive </p><ul style="display: flex;"><li style="flex:1">triggers. </li><li style="flex:1">Measurement </li><li style="flex:1">is </li></ul><p>repeated until the recorded evets reach the set numbers of </p><p>trigger per point. The final </p><p>value is then estimated by a Poisson fit of collected data. </p><p><strong>Data File: </strong>Path to save the single txt file containing the dark rate per voltage point and per temperature </p><p><strong>Temperature array: </strong>Comma separated temperature values. For </p><p>each temperature a dark rate scan up to the maximum voltage <strong>OR </strong>until instrument saturation will be performed. </p><p><strong>Max Voltage: </strong>Maximum value of HV to be tested. Typically sensors saturate dark rate measurement capabilities of the instruments </p><ul style="display: flex;"><li style="flex:1">before reaching this point. IN such </li><li style="flex:1">a</li><li style="flex:1">case, the </li></ul><p>measurement will stop once the saturation point is </p><p>reached. An emergency ramp down is implemented in case </p><p>of current exceeding compliance set in HV tab. </p><p>20 / 11 / 2020 </p><p>25 </p><p>E. L. Gkougkousis </p><p><strong>Timing Analysis Framework </strong></p><p>Why does it makes sense? </p><p> Code available on git: <a href="/goto?url=https://gitlab.cern.ch/egkougko/lgadutils" target="_blank">https://gitlab.cern.ch/egkougko/lgadutils </a></p><p> Structure: </p><p>Gkougkousis V. RD50 Talk June 2020: <a href="/goto?url=https://indico.cern.ch/event/918298/contributions/3880598/attachments/2050927/3438310/RD50_2020_Gkougkousis.pdf" target="_blank">link </a></p><p>Package headers </p><p>Steering macro examples (local) Classes implementation Grid Macros Example files from all instruments Grid Scripts for batch jobs </p><p>External libraries </p><p> Following standard ATLAS analysis package organization Running as interpreted (CINT), compiled (CMake) or RootCore version </p><p> Tested in multiplatform environment (Windows, Linux), appropriate preprocessor </p><p>instructions incorporated for compatibility <br> Only requirement ROOT (with <strong>FFTW </strong>and <strong>RooFit</strong>), no ATLAS software Validated with ROOT 5 and production version of ROOT 6 Allows users to control their analysis by creating a top level steering macro Combines all steps, from data conversion starting from RAW or txt files to plotting </p><p>20 / 11 / 2020 </p><p>26 </p><p>E. L. Gkougkousis </p><p><strong>Timing Analysis Framework </strong></p><p>How is the logic structured? </p><p> Four main classes with dedicated header and implementation files, one wrapper class handling user interaction </p><p> <strong>LGADUtils </strong></p><p> <strong>LGADBase </strong></p><p> <strong>LGADRun </strong></p><p> <strong>LGADChannel </strong></p><p> <strong>WaveForm </strong></p><p>Wrapper to handle user I/O and pass arguments Basic framework function and infastructure </p><p>Timing resolution, CFD maps, multi DUT operations </p><p>Mean pulse shape, mean pulse properties form entire run SingleWaveform properties and time walk corrections <strong>Selector Class with auto-set 64 channel support </strong></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages63 Page
-
File Size-