
<p>ORDER OF MAGNITUDE PHYSICS </p><p><strong>RICHARD ANANTUA, JEFFREY FUNG AND JING LUAN </strong><br><strong>WEEK 2: FUNDAMENTAL INTERACTIONS, NUCLEAR AND ATOMIC PHYSICS </strong></p><p>REVIEW OF BASICS </p><p>• Units </p><p>• Systems include SI and cgs • Dimensional analysis must confirm units on both sides of an equation match </p><p>• BUCKINGHAM’S PI THEOREM - For a physical equation involving <em>N </em>variables, if there are <em>R </em>independent dimensions, then there are <em>N-R </em>independent dimensionless groups, denoted Π<sub style="top: 0.4167em;">"</sub>, …, Π<sub style="top: 0.4167em;">%&'</sub>. </p><p>UNITS REVIEW – BASE UNITS </p><p>• Physical quantities may be expressed using several choices of units • Unit systems express physical quantities in terms of base units or combinations thereof </p><p><strong>Quantity </strong></p><p>Length </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>SI (mks) </strong></li><li style="flex:1"><strong>Gaussian (cgs) </strong></li></ul><p></p><p>Centimeter (cm) Gram (g) </p><p><strong>Imperial </strong></p><p></p><ul style="display: flex;"><li style="flex:1">Meter (m) </li><li style="flex:1">Foot (ft) </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Mass </li><li style="flex:1">Kilogram (kg) </li></ul><p>Second (s) Kelvin (K) <br>Pound (lb) Second (s) Farenheit (ºF) </p><ul style="display: flex;"><li style="flex:1">Time </li><li style="flex:1">Second (s) </li></ul><p>Temperature Luminous intensity Amount <br>Kelvin (K)* <br>Candela (cd) Mole (mol) Ampere (A) <br>Candela (cd)* Mole (mol)* <br>Current </p><p>* Sometimes not considered a base cgs unit </p><p>REVIEW – DERIVED UNITS </p><p>• Units may be derived from others </p><p><strong>Quantity </strong></p><p>Momentum Force </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>SI </strong></li><li style="flex:1"><strong>cgs </strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">kg m s<sup style="top: -0.4167em;">-1 </sup></li><li style="flex:1">g cm s<sup style="top: -0.4167em;">-1 </sup></li></ul><p>Newton N=kg m s<sup style="top: -0.4167em;">-2 </sup>Joule J=kg m<sup style="top: -0.3333em;">2 </sup>s<sup style="top: -0.3333em;">-2 </sup>Watt J=kg m<sup style="top: -0.3333em;">2 </sup>s<sup style="top: -0.3333em;">-3 </sup>dyne dyn=g cm s<sup style="top: -0.4167em;">-2 </sup>erg=g cm<sup style="top: -0.3333em;">2 </sup>s<sup style="top: -0.3333em;">-2 </sup>erg/s=g cm<sup style="top: -0.3333em;">2 </sup>s<sup style="top: -0.3333em;">-3 </sup><br>Energy Power </p><ul style="display: flex;"><li style="flex:1">Pressure </li><li style="flex:1">Pascal Pa=kg m<sup style="top: -0.3333em;">-1 </sup>s<sup style="top: -0.3333em;">-2 </sup>barye Ba=g cm<sup style="top: -0.3333em;">-1 </sup>s<sup style="top: -0.3333em;">-2 </sup></li></ul><p></p><p>• Some unit systems differ in which units are considered fundamental </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Electrostatic Units </strong></li><li style="flex:1"><strong>SI (mks) </strong></li><li style="flex:1"><strong>Gaussian cgs </strong></li></ul><p></p><p>(cm<sup style="top: -0.3333em;">3 </sup>g s<sup style="top: -0.3333em;">-2</sup>)<sup style="top: -0.3333em;">1/2 </sup>(cm<sup style="top: -0.3333em;">3 </sup>g s<sup style="top: -0.3333em;">-4</sup>)<sup style="top: -0.3333em;">1/2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">Charge </li><li style="flex:1">A s </li></ul><p></p><ul style="display: flex;"><li style="flex:1">A</li><li style="flex:1">Current </li></ul><p></p><p>REVIEW – UNITS </p><p>• The cgs system for electrostatics is based on the assumptions kE=1, kM =2kE/c<sup style="top: -0.6667em;">2 </sup></p><p>• EXERCISE: Given the Gaussian cgs unit of force is g cm s<sup style="top: -0.75em;">-2</sup>, what is the electrostatic unit of charge? </p><p>2</p><p>#</p><p>)/+ </p><p>= g cm<sup style="top: -0.5833em;">/ </sup>s<sup style="top: -0.5833em;">1+ )/+ </sup></p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">! = </li><li style="flex:1">⟹ # = ! & </li></ul><p>[&]2 </p><p>REVIEW – BUCKINGHAM’S PI THEOREM </p><p>• BUCKINGHAM’S PI THEOREM - For a physical equation involving <em>N </em>variables, if there are <em>R </em>independent dimensions, then there are <em>N-R </em>independent dimensionless groups, denoted Π<sub style="top: 0.4167em;">"</sub>, …, Π<sub style="top: 0.4167em;">%&'</sub>. </p><p>• EXERCISE: What are the units of f(Π<sub style="top: 0.4167em;">"</sub>, …, Π<sub style="top: 0.4167em;">%&'</sub>)? </p><p>• We can write f(Π , …, Π )=C for dimensionless constant C </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">%&' </li></ul><p></p><p>• EXERCISE: What variables are relevant for the drag force on a marble falling slowly through honey? </p><p>• Drag force Fd, Viscosity (, radius R, speed v, fluid density ρ </p><p>*+ </p><p>FUNDAMENTAL PARTICLES AND INTERACTIONS </p><p>• “Atomic” concept and origins • Hierarchy of scales • Standard Model of particle physics </p><p>• Nuclear physics • Atomic physics </p><p>ICEBREAKER – PHYSICS 2 TRUTHS AND A LIE </p><p>• Make 2 true statements and 1 false statement </p><p>• 1 statement must be about yourself • 1 statement must be about your home institution • 1 statement must be about physics </p><p>HISTORY OF THE “ATOM” </p><p>• Ancient Greeks believed that matter is infinitely and continuously divisible until the advent of the Atomism </p><p>• Democritus (ca. 460B.C.-370B.C.) – Theory of Atomism: </p><p>• Matter ultimately consists of “atoms” or unchanging discrete particles </p><p>ATOMIC MODEL - HISTORY </p><p>• Democritus (ca. 460B.C.-370B.C.) – Theory of Atomic (Discrete) Matter • John Dalton (1766-1844) – Atomic Chemistry </p><p>LAW OF MULTIPLE PROPORTIONS: <br>If Elements A and B can form Compounds 1, 2, 3 … , </p><p>then for a fixed mass of A, the masses of B occurring in different compounds form ratios of integers form </p><p>ATOMIC MODEL - HISTORY </p><p>• Democritus (ca. 460B.C.-370B.C.) – Theory of Atomic (Discrete) Matter • John Dalton (1766-1844) – Atomic Chemistry </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Compound </strong></li><li style="flex:1"><strong>Tin </strong></li><li style="flex:1"><strong>Tin </strong></li></ul><p></p><p>• EXERCISE: Tin and oxygen form the following compounds: </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>oxide </strong></li><li style="flex:1"><strong>dioxide </strong></li></ul><p></p><p>Percentage of mass 88.1% from tin <br>78.7% <br>Percentage of mass 11.9% from oxygen <br>21.3% </p><p>For 100g of tin, how much oxygen is needed to make 1.) tin oxide, 2.) tin dioxide? </p><p>100g </p><p>1. ) Oxygen in tin oxide = </p><p>.119 = 13.51g <br>.881 100g </p><p>2.) Oxygen in tin dioxide = </p><p>.213 = 27.06g <br>.787 </p><p>ATOMIC MODEL - HISTORY </p><p>• Democritus (ca. 460B.C.-370B.C.) – Theory of Atomic (Discrete) Matter • John Dalton (1766-1844) – Atomic Chemistry </p><p>1. Matter is comprised of small, but finite-sized atoms 2. All atoms of a given element are identical 3. Atoms cannot be destroyed 4. Compounds are formed by combining atoms in ratios of whole numbers 5. Chemical reactions are rearrangements of atoms </p><p>CHARGE CONCEPT AND HISTORY </p><p>• The Greeks also knew when certain materials (for example, amber (elektron)) were rubbed, a force could make some attract and some repel. </p><p>• William Gilbert (1544-1603) – wrote <em>De Magnete</em>, in which he coined <br>“electrius” (of amber) to describe attractive properties of charged materials </p><p>ATOMIC MODEL - HISTORY </p><p>• Democritus (ca. 460B.C.-370B.C.) – Theory of Atomic (Discrete) Matter • John Dalton (1766-1844) – Atomic Chemistry • Joseph Thomson (1856-1940) – Discovered negative “corpuscles” accelerated enough in cathode ray tubes to suggest they were 2000x lighter than H atoms </p><p>Plum Pudding Model: Electrons thought to be small negative charges immersed in the positive interior of an atom </p><p>• Thompson used electric plates and magnets in cathode ray tubes to determine e/me </p><p>ATOMIC MODEL - HISTORY </p><p>• Democritus (ca. 460B.C.-370B.C.) – Theory of Atomic (Discrete) Matter • John Dalton (1766-1844) – Atomic Chemistry • Joseph Thomson (1856-1940) – Plum Pudding Model of Atom </p><p>• Exercise: Combine fundamental constants ! , e, % and & for the electron and photon into a </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">"</li></ul><p></p><p>length scale, i.e., the classical electron radius </p><p>[)] + <br>[-]<sup style="top: -0.3333em;">, </sup><br>[3] + <br>[5]<sup style="top: -0.3333em;">, </sup></p><p>6<sub style="top: 0.25em;">7 </sub>"<sup style="top: -0.4167em;">8 </sup><br>9<sub style="top: 0.25em;">7 </sub></p><p>+</p><p>6<sub style="top: 0.25em;">7 </sub>"<sup style="top: -0.4167em;">8 </sup>9<sub style="top: 0.25em;">7 </sub>:<sup style="top: -0.3333em;">8 </sup></p><p>,</p><p></p><ul style="display: flex;"><li style="flex:1">4</li><li style="flex:1">4</li></ul><p></p><p>,</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">!<sub style="top: 0.25em;">" </sub>= </li><li style="flex:1">⟹ !<sub style="top: 0.25em;">"</sub>/ = 0 1 = </li><li style="flex:1">⟹</li><li style="flex:1">=</li><li style="flex:1">⟹</li><li style="flex:1">= [1] </li></ul><p></p><p>,</p><p>5</p><p>!<sub style="top: 0.3333em;">"</sub>/<sup style="top: -0.5em;">, </sup>%<sub style="top: 0.3333em;">"</sub>&<sup style="top: -0.4167em;">, </sup></p><p>8.99 ? 10<sup style="top: -0.5em;">B</sup>N ? m<sup style="top: -0.5em;">,</sup>/C<sup style="top: -0.5em;">, </sup>1.60 ? 10<sup style="top: -0.5em;">EFB</sup>C<sup style="top: -0.5em;">, , </sup></p><p></p><ul style="display: flex;"><li style="flex:1">; = </li><li style="flex:1">=</li><li style="flex:1">= 2.80 ⋅ 10<sup style="top: -0.5833em;">EFN </sup></li><li style="flex:1">m</li></ul><p></p><p>"</p><p>9.11 ⋅ 10<sup style="top: -0.4167em;">E4F</sup>kg 3.00 ⋅ 10<sup style="top: -0.4167em;">K</sup>m/s </p><p>,</p><p>ATOMIC MODEL - HISTORY </p><p>• Democritus (ca. 460B.C.-370B.C.) – Theory of Atomic (Discrete) Matter • John Dalton (1766-1844) – Atomic Chemistry • Joseph Thomson (1856-1940) – Plum Pudding Model of Atom • Ernest Rutherford (1871-1937) – Fired positive !-particles at a few atoms thick gold foil sheet, and some recoiled backwards (imagine a cannonball recoiling from tissue) </p><p>• Exercise: What would be the mass of a H atom if the nucleus were filled without empty space all the way up to the electron and were the size of a marble? </p><p>+<br>+</p><p></p><ul style="display: flex;"><li style="flex:1">*</li><li style="flex:1">10<sup style="top: -0.5em;">45</sup>m </li></ul><p></p><p>#$%&'( +</p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">=</li><li style="flex:1">"<sub style="top: 0.3333em;">0 </sub>≈ </li><li style="flex:1"><sub style="top: 0.5833em;">+ </sub>10<sup style="top: -0.5833em;">459</sup>kg = 10<sup style="top: -0.5833em;"><</sup>kg </li></ul><p></p><p>#$%&'( </p><p>10<sup style="top: -0.4167em;">478 </sup></p><p>m<br>*</p><p>,-.'(-/ </p><p>HIERARCHY OF SCALES </p><p>• Modern physics spans an astounding range of scales from quantum to cosmological </p><p>Observable <br>?e- </p><p>?</p><p>Galaxy </p><p>?<br>?<br>Universe </p><p>m</p><p>10<sup style="top: -0.4167em;">-35 </sup></p><p>10<sup style="top: -0.3333em;">-14 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">?</li></ul><p></p><p>HIERARCHY OF SCALES </p><p>• Modern physics spans an astounding range of scales from quantum to cosmological </p><p>Observable e- </p><p>Galaxy </p><p>10<sup style="top: -0.3333em;">21 </sup></p><p>Strings </p><p>10<sup style="top: -0.4167em;">-35 </sup></p><p>Nucleus </p><p>10<sup style="top: -0.3333em;">-14 </sup></p><p>Universe </p><p>m</p><p>10<sup style="top: -0.4167em;">-15 </sup></p><p>1</p><p>10<sup style="top: -0.4167em;">27 </sup></p><p>HIERARCHY OF SCALES </p><p>• Length scales can be associated with momenta via the de Broglie relation </p><p>!" = ℎ, ℎ = 6.63 ) 10<sup style="top: -0.5em;">,-.</sup>J ) s = 4.12 ) 10<sup style="top: -0.5em;">,23 </sup>eV ) s </p><p>• Rest mass can be associated with an energy scale via 4 = 86<sup style="top: -0.5833em;">9 </sup></p><p>4<sub style="top: 0.3333em;">5 </sub>= ℎ6/! </p><p>• Photon energy is related to wavelength via </p><p>Infrared Photon </p><p>UV <br>Radio </p><p>Photon </p><p>Planck Energy <br>Baryonic Acoustic Oscillation </p><p>Higgs Boson </p><p>Proton e- </p><p>Photon <br>Energy <br>10<sup style="top: -0.3333em;">28</sup>eV <br>?</p><p>?</p><p>0.1TeV ? </p><p>?</p><p>0.1 eV <br>?</p><p>HIERARCHY OF SCALES </p><p>• Length scales can be associated with momenta via the de Broglie relation </p><p>'* = ℎ, ℎ = 6.63 / 10<sup style="top: -0.5em;">234</sup>J / s = 4.12 / 10<sup style="top: -0.5em;">289 </sup>eV / s </p><p>• Rest mass can be associated with an energy scale via ! = (%<sup style="top: -0.5833em;">) </sup></p><p>!<sub style="top: 0.3333em;">" </sub>= ℎ%/' </p><p>• Photon energy is related to wavelength via </p><p>Infrared Photon </p><p>UV <br>Radio </p><p>Photon </p><p>Planck Energy <br>Baryonic Acoustic Oscillation </p><p>Higgs Boson </p><p>Proton e- </p><p>Photon <br>Energy </p><p>10<sup style="top: -0.4167em;">28</sup>eV <br>Sound wave, not light </p><p>150 Mpc </p><p></p><ul style="display: flex;"><li style="flex:1">0.5MeV </li><li style="flex:1">0.1 eV </li></ul><p></p><p>0.1TeV GeV </p><p>1 neV </p><p>(1 km) <br>0.1 keV </p><p>(10<sup style="top: -0.3333em;">-8 </sup>m) (10<sup style="top: -0.4167em;">-5 </sup>m) </p><p>UNIFICATION IN PHYSICS </p><p>• Einstein unified inertial and accelerating reference frames in the general theory of relativity </p><p>• In electromagnetism, special relativity shows us electricity and magnetism are two sides of the same coin <br>• Other interactions in physics have been shown or predicted to be unified </p><p>ORDER OF MAGNITUDE PHYSICS </p><p><strong>RICHARD ANANTUA, JEFFREY FUNG AND JING LUAN </strong><br><strong>WEEK 2: FUNDAMENTAL INTERACTIONS, NUCLEAR AND ATOMIC PHYSICS </strong></p><p>REVIEW </p><p>• List these events in chronological order and name relevant scientists: Gold Foil <br>Experiment, Plum Pudding Model, Atomism, Law of Multiple Proportions </p><p>• Atomism (Democritus), Law of Multiple Proportions (Dalton), Plum Pudding Model (Thomson), <br>Gold Foil Experiment (Rutherford) </p><p>• Arrange the following in order of increasing energy needed to produce in a particle accelerator: string, electron, proton. </p><p>• Electron, proton, string </p><p>• Two Truths and a Lie </p><p>• ____ hates physics • Daulande doesn’t have a ____ </p><p>REVIEW </p><p>• List these events in chronological order and name relevant scientists: Gold Foil <br>Experiment, Plum Pudding Model, Atomism, Law of Multiple Proportions </p><p>• Atomism (Democritus), Law of Multiple Proportions (Dalton), Plum Pudding Model (Thomson), <br>Gold Foil Experiment (Rutherford) </p><p>• Arrange the following in order of increasing energy needed to produce in a particle accelerator: string, electron, proton. </p><p>• Electron, proton, string </p><p>• Two Truths and a Lie </p><p>• Arthur hates physics • Daulande doesn’t have a ____ </p><p>REVIEW </p><p>• List these events in chronological order and name relevant scientists: Gold Foil <br>Experiment, Plum Pudding Model, Atomism, Law of Multiple Proportions </p><p>• Atomism (Democritus), Law of Multiple Proportions (Dalton), Plum Pudding Model (Thomson), <br>Gold Foil Experiment (Rutherford) </p><p>• Arrange the following in order of increasing energy needed to produce in a particle accelerator: string, electron, proton. </p><p>• Electron, proton, string </p><p>• Two Truths and a Lie </p><p>• Arthur hates physics • Daulande doesn’t have a goldfish </p><p>STANDARD MODEL OF PARTICLE PHYSICS </p><p>• The Standard Model is currently comprised of </p><p>• (Integer+1/2)-spin fermions and integer-spin bosons • 3 generations of fermions • Electromagnetic, weak and strong gauge bosons </p><p>• Fermions (but not bosons) obey the </p><p>• PAULI EXCLUSION PRINCIPLE – no two half-spin particles can occupy the same quantum state </p><p>QUARKS MULTIPLETS </p><p>• Hadrons are combinations of quarks “glued” together by gluons via strong interaction </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><p>• Mesons, such as ! and ! , are quark doublets • Baryons, such as p and n, are quark triples </p><p>Q=? s=? <br>Q=? s=? <br>Q=? s=? <br>Q=? s=? </p><p>• Quarks may exist in combinations of 5’s known as pentaquarks • Leptons, such as electrons and muons, have no quark substructure and do not partake in the strong interaction </p><p>QUARKS MULTIPLETS </p><p>• Hadrons are combinations of quarks “glued” together by gluons via strong interaction </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><p>• Mesons, such as ! and ! , are quark doublets • Baryons, such as p and n, are quark triples </p><p></p><ul style="display: flex;"><li style="flex:1">Q=1 </li><li style="flex:1">Q=-1 </li></ul><p>s=0 <br>Q=1 s=1/2 <br>Q=0 s=1/2 </p><p>• Quarks may exist in combinations of 5’s known as<sup style="top: -1.6667em;">s=</sup>p<sup style="top: -1.6667em;">0</sup>entaquarks • Leptons, such as electrons and muons, have no quark substructure and do not partake in the strong interaction </p><p>SPONTANEOUS SYMMETRY BREAKING </p><p>• Feynman devised diagrams modeling forces (electromagnetic, weak and strong) as interactions mediated by exchange particles </p><p>• Photons carry the electromagnetic force • W and Z bosons carry the weak force </p><p>t<br>Richard Feynman 1918-1988 </p><p>• Gluons carry the strong force • At high energy, symmetry emerges among </p><p>E</p><p>force-carrying Goldstone bosons <br>• Many low energy states available to break </p><p>symmetry </p><p>UNIFICATION IN PHYSICS </p><p>• Einstein unified inertial and accelerating reference frames in the general theory of relativity <br>• In electromagnetism, special relativity shows us electricity and magnetism are two sides of the same coin <br>• At the electroweak energy scale (246 GeV), the electromagnetic force is </p><p>indistinguishable from the weak force <br>• At the strong-electroweak scale, the electroweak force is predicted by grand unified </p><p>theory to be indistinguishable from the strong force. Proton decay detectors such as super Kamiokande have yet to confirm this prediction </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages42 Page
-
File Size-