Evolutionary History of Triticum petropavlovskyi Udacz. et Migusch. Inferred from the Sequences of the 3-Phosphoglycerate Kinase Gene Qian Chen1,2., Hou-Yang Kang1., Xing Fan1, Yi Wang1, Li-Na Sha1, Hai-Qin Zhang1, Mei-Yu Zhong1, Li-Li Xu1, Jian Zeng3, Rui-Wu Yang4, Li Zhang4, Chun-Bang Ding4, Yong-Hong Zhou1,2* 1 Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People’s Republic of China, 2 Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Sichuan, People’s Republic of China, 3 College of Resources and Environment, Sichuan Agricultural University, Sichuan, People’s Republic of China, 4 College of Biology and Science, Sichuan Agricultural University, Sichuan, People’s Republic of China Abstract Single- and low-copy genes are less likely to be subject to concerted evolution. Thus, they are appropriate tools to study the origin and evolution of polyploidy plant taxa. The plastid 3-phosphoglycerate kinase gene (Pgk-1) sequences from 44 accessions of Triticum and Aegilops, representing diploid, tetraploid, and hexaploid wheats, were used to estimate the origin of Triticum petropavlovskyi. Our phylogenetic analysis was carried out on exon+intron, exon and intron sequences, using maximum likelihood, Bayesian inference and haplotype networking. We found the D genome sequences of Pgk-1 genes from T. petropavlovskyi are similar to the D genome orthologs in T. aestivum, while their relationship with Ae. tauschii is more distant. The A genome sequences of T. petropavlovskyi group with those of T. polonicum, but its Pgk-1 B genome sequences to some extent diverge from those of other species of Triticum. Our data do not support for the origin of T. petropavlovskyi either as an independent allopolyploidization event between Ae. tauschii and T. polonicum, or as a monomendelian mutation in T. aestivum. We suggest that T. petropavlovskyi originated via spontaneous introgression from T. polonicum into T. aestivum. The dating of this introgression indicates an age of 0.78 million years; a further mutation event concerning the B genome occurred 0.69 million years ago. Citation: Chen Q, Kang H-Y, Fan X, Wang Y, Sha L-N, et al. (2013) Evolutionary History of Triticum petropavlovskyi Udacz. et Migusch. Inferred from the Sequences of the 3-Phosphoglycerate Kinase Gene. PLoS ONE 8(8): e71139. doi:10.1371/journal.pone.0071139 Editor: Tianzhen Zhang, Nanjing Agricultural University, China Received May 17, 2013; Accepted July 1, 2013; Published August 19, 2013 Copyright: ß 2013 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was financially supported by the National Natural Science Foundation of China (31101151), the National Transgenic Major Project (2011zx08009001), the National High-tech R&D Program of China (863 Program) (2011AA100103-02), the Special Fund for Agro-Scientific Research in the Public Interest of China (201003021), and the Science and Technology Bureau and Education Bureau of Sichuan Province, China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] . These co-first authors contributed equally to this work. Introduction polonicum. Several previous studies indicated that the genes supporting a long glume in T. polonicum and T. petropavlovskyi were In the Xinjiang region of China, Triticum species are abundant. allelic and located on the long arm of chromosome 7A [12–14], The Xinjiang rice wheat (Triticum petropavlovskyi Udacz. et agreeing with the hypothesis of spontaneous hybridization. Yen et Migusch.), known as ‘Daosuimai’ or rice-head wheat, is one of al. [15] studied the natural distribution in Xinjiang of Aegilops the Chinese endemic wheat landraces, together with the Sichuan tauschii, and Yang et al. [16] and Liu et al. [17] reported a similar white wheat complex (T. aestivum L.), Tibetan weedrace (T. aestivum distribution for a dwarfing accession of T. polonicum and suggested ssp. tibetanum Shao) and Yunnan hulled wheat (T. aestivum ssp. that T. petropavlovskyi is derived from a hybridization event between yunnanense King) [1]. Based on chromosome pairing, morphology, T. polonicum and Ae. tauschii. However, Efremova et al. [18] eco-geographical origin and RFLP analysis, the Xinjiang rice maintained that T. petropavlovskyi originated from T. aestivum wheat is distinct from other Chinese endemic wheat landraces [2– through spontaneous mutation. 5]. Despite prior intensive research, the origin of T. petropavlovskyi is The origin of T. petropavlovskyi has been discussed for decades. still uncertain, and three hypotheses have been proposed: (1) T. Gorsky [6] analyzed the morphology of Xinjiang rice wheat, and petropavlovskyi is an independent species is derived from a natural suggested that it was a mutated form of the tetraploid Triticum hybridization event between T. polonicum and Ae. tauschii [10,15,19– polonicum L.. However, Udachin and Miguschova [7] discovered 21]; (2) T. petropavlovskyi is a natural cross or backcross between T. that the Xinjiang rice wheat is not tetraploid but hexaploid, and polonicum and T. aestivum [2,11,12,22,23]; and (3) T. petropavlovskyi is named it T. petropavlovskyi Udacz. et Migusch. The chromosomal a monogenic mutant of T. aestivum [18,24]. In a recently study, constitutions of the Xinjiang rice wheat is AABBDD [2,8–10]. Dorofeev et al. [11] hypothesized that T. petropavlovskyi could be the Kang et al. [25] created the synthetic hexaploid wheat (SHW- result of spontaneous hybridization between T. aestivum and T. DPW) between T. polonicum from Xinjiang and Ae. tauschii: its spike PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e71139 Evolutionary History of Triticum petropavlovskyi Table 1. Plants used in this study. Species Genome Accession Origin Abbrev. GenBank Ac. No. Triticum urartu Thum. ex Gandil. Au TA763 Lebanon TUR63A AF343474 Aegilops bicornis (Forskal) Jaub. et Spach. Sb TA1954 Egypt AEB954S AF343485 Aegilops longissima Schweinf. et Muschl. Sl TA1912 Israel AEL912S AF343487 Aegilops searsii Feldman et Kislev Ss TA2355 Israel AES355S AF343489 Aegilops sharonensis Eig Ssh TA2065 Turkey AES065S AF343486 Aegilops speltoides Tausch S TA2368 Turkey AES368S AF343483 Aegilops speltoides var. ligustica (Savign.) Fiori S TA1770 Iraq AEL770S AF343484 Aegilops tauschii Cosson D AS60 Middle East AET60D JQ327050 TA1691 Unkown AET691D AF343479 Triticum polonicum L. AB AS302 Xinjiang, China TPO302A JQ327101 TPO302B JQ327102 AS304 Xinjiang, China TPO304A JQ327088 TPO304B JQ327089 PI42209 Australia TPO209A JQ327096 TPO209B JQ327097 Triticum turgidum L. AB AS2233 Xinjiang, China TUR233A JQ327113 TUR233B JQ327114 AS2277 Xinjiang, China TUR277A JQ327077 TUR277B JQ327078 Triticum durum Desf. AB AS2349 Xinjiang, China TDU349A JQ327115 TDU349B JQ327116 Triticum durum Desf. cv. Langdon AB LDN USA TDULA JQ327057 TDULB JQ327058 Triticum turanicum Jakubz. AB AS2229 Xinjiang, China TTU229A JQ327109 TTU229B JQ327110 AS2279 Xinjiang, China TTU279A JQ327111 TTU279B JQ327112 Triticum dicoccoides (Koern. ex Aschers. et AB TA51 Israel TDI51A AF343481 Graeb.) Schweinf. TDI51B AF343476 AS838 Xinjiang, China TDI838A JQ327075 TDI838B JQ327076 Triticum carthlicum Nevski (syn. T. persicum Vav.)AB PI532494 Kars, Turkey TCA494A JQ327065 TCA494B JQ327066 PI532509 Xinjiang, China TCA509A JQ327073 TCA509B JQ327074 Triticum timopheevii (Zhuk.) Zhuk. AG TA2 Armenia TTI2A AF343477 TTI2G AF343488 PI94761 Georgia, USA TTI761A JQ327126 TTI761G JQ327127 Triticum petropavlovskyi Udacz. et Migusch. ABD AS358 Xinjiang, China TPE358A JQ327090 TPE358B JQ327091 TPE358D JQ327092 AS359 Xinjiang, China TPE359A JQ327103 TPE359B JQ327104 TPE359D JQ327105 AS360 Xinjiang, China TPE360A JQ327106 TPE360B JQ327107 TPE360D JQ327108 Triticum aestivum L. ssp. tibetanum Shao ABD AS1026 Xizang, China TTB1026A JQ327123 PLOS ONE | www.plosone.org 2 August 2013 | Volume 8 | Issue 8 | e71139 Evolutionary History of Triticum petropavlovskyi Table 1. Cont. Species Genome Accession Origin Abbrev. GenBank Ac. No. TTB1026B JQ327124 TTB1026D JQ327125 AS1027 Xizang, China TTB1027A JQ327062 TTB1027B JQ327063 TTB1027D JQ327064 Triticum aestivum L. ssp. yunnanense King ABD AS331 Yunnan, China TYU331A JQ327131 TYU331B JQ327132 TYU331D JQ327133 AS338 Yunnan, China TYU338A JQ327085 TYU338B JQ327086 TYU338D JQ327087 AS343 Yunnan, China TYU343A JQ327128 TYU343B JQ327129 TYU343D JQ327130 Triticum sphaerococcum Perciv. ABD PI70711 Iraq TSP711A JQ327117 TSP711B JQ327118 TSP711D JQ327119 PI115818 Punjab, India TSP818A JQ327093 TSP818B JQ327094 TSP818D JQ327095 Triticum macha Dekapr. et Menabde. ABD PI278660 UK TMA660A JQ327082 TMA660B JQ327083 TMA660D JQ327084 Triticum spelta L. ABD PI347852 Switzerland TPL852A JQ327098 TPL852B JQ327099 TPL852D JQ327100 PI347858 Switzerland TPL858A JQ327120 TPL858B JQ327121 TPL858D JQ327122 Triticum compactum Host ABD PI124298 Unknown TCO298A JQ327070 TCO298B JQ327071 TCO298D JQ327072 PI352299 Switzerland TCO299A JQ327067 TCO299B JQ327068 TCO299D JQ327069 Triticum aestivum L. cv. Chinese Spring ABD CS Sichuan, China TCHSA JQ327051 TCHSB JQ327052 TCHSD JQ327053 Triticum aestivum L. cv. Chuannong-16 ABD CN16 Sichuan, China TCN16A JQ327054 TCN16B
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages16 Page
-
File Size-