Financial Mathematics

Financial Mathematics

Financial Mathematics Rudiger¨ Kiesel February, 2005 0-0 1 Financial Mathematics Lecture 1 by Rudiger¨ Kiesel Department of Financial Mathematics, University of Ulm Department of Statistics, LSE RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 2 Aims and Objectives • Review basic concepts of probability theory; • Discuss random variables, their distribution and the notion of independence; • Calculate functionals and transforms; • Review basic limit theorems. RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 3 Probability theory To describe a random experiment we use sample space Ω, the set of all possible outcomes. Each point ω of Ω, or sample point, represents a possible random outcome of performing the random experiment. For a set A ⊆ Ω we want to know the probability IP (A). The class F of subsets of Ω whose probabilities IP (A) are defined (call such A events) should be be a σ-algebra , i.e. closed under countable, disjoint unions and complements, and contain the empty set ∅ and the whole space Ω. Examples. Flip coins, Roll two dice. RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 4 Probability theory We want (i) IP (∅) = 0, IP (Ω) = 1, (ii) IP (A) ≥ 0 for all A, (iii) If A1,A2,..., are disjoint, S P IP ( i Ai) = i IP (Ai) countable additivity. (iv) If B ⊆ A and IP (A) = 0, then IP (B) = 0 (completeness). A probability space, or Kolmogorov triple, is a triple (Ω, F, IP ) satisfying Kolmogorov axioms (i),(ii),(iii), (iv) above. RSITÄT E U A probability space is a mathematical model of a random experiment. IV L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 5 Probability theory Let (Ω, F, IP ) be a probability space. A random variable (vector) X is a function X :Ω → IR(IRk) such that X−1(B) = {ω ∈ Ω: X(ω) ∈ B} ∈ F for all Borel sets B ∈ B(B(IRk)). For a random variable X {ω ∈ Ω: X(ω) ≤ x} ∈ F for all x ∈ IR. So define the distribution function FX of X by FX (x) := IP ({ω : X(ω) ≤ x}). Recall: σ(X), the σ-algebra generated by X. RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 6 Probability theory • Binomial distribution: Number of successes n IP (S = k) = pk(1 − p)n−k. n k • Geometric distribtion: Waiting time IP (N = n) = p(1 − p)n−1. • Poisson distribution: λ IP (X = k) = e−λ . k! • Uniform distribution: 1 RSITÄT f(x) = 1 . V E U {(a,b)} I L N M b − a U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 7 Probability theory • Exponential distribution: −λx f(x) = λe 1{[0,∞)}. The expectation E of a random variable X on (Ω, F, IP ) is defined by Z Z E X := XdIP, or X(ω)dIP (ω). Ω Ω The variance of a random variable is defined as 2 2 2 V (X) := E (X − E (X)) = E X − (E X). RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 8 Probability theory If X is real-valued with density f, Z E X := xf(x)dx or if X is discrete, taking values xn(n = 1, 2,...) with probability function f(xn)(≥ 0), X E X := xnf(xn). Examples. Moments for some of the above distributions. Random variables X1,...,Xn are independent if whenever Ai ∈ B for i = 1, . n we have n ! n \ Y IP {Xi ∈ Ai} = IP ({Xi ∈ Ai}). RSITÄT V E U i=1 i=1 I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 9 Probability theory In order for X1,...,Xn to be independent it is necessary and sufficient that for all x1, . xn ∈ (−∞, ∞], n ! n \ Y IP {Xi ≤ xi} = IP ({Xi ≤ xi}). i=1 i=1 Multiplication Theorem If X1,...,Xn are independent and E |Xi| < ∞, i = 1, . , n, then n ! n Y Y E Xi = E (Xi). i=1 i=1 RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 10 Probability theory If X, Y are independent, with distribution functions F , G Z := X + Y, let Z have distribution function H. Call H the convolution of F and G, written H = F ∗ G. Suppose X, Y have densities f, g. Then Z H(z) = IP (X + Y ≤ z) = f(x)g(y)dxdy, {(x,y):x+y≤z} Thus Z ∞ Z z−x Z ∞ H(z) = f(x) g(y)dy dx = f(x)G(z − x)dx. −∞ −∞ −∞ RSITÄT V E U I L N M Example. Gamma distribution. U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 11 Probability theory If X is a random variable with distribution function F , its moment generating function φX is Z ∞ tX tx φ(t) := E (e ) = e dF (x). −∞ The mgf takes convolution into multiplication: if X, Y are independent, φX+Y (t) = φX (t)φY (t). Observe φ(k)(t) = E (XketX ) and φ(0) = E (Xk). For X on nonnegative integers use the generating function ∞ X X k γX (z) = E (z ) = z IP (Z = k). SITÄ ER T k=0 V U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 12 Probability theory Conditional expectation For events: IP (A|B) := IP (A ∩ B)/IP (B) if IP (B) > 0. Implies the multiplication rule: IP (A ∩ B) = IP (A|B)IP (B) Leads to the Bayes rule IP (Ai)IP (B|Ai) IP (Ai|B) = P . j IP (Aj)IP (B|Aj) RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 13 Probability theory For discrete random variables: If X takes values x1, . , xm with probabilities f1(xi) > 0, Y takes values y1, . , yn with probabilities f2(yj) > 0, (X, Y ) takes values (xi, yj) with probabilities f(xi, yj) > 0, then the marginal distributions are n X f1(xi) = f(xi, yj). j=1 m X f (y ) = f(x , y ). 2 j i j RSITÄT V E U I L N M i=1 U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 14 Probability theory IP (X = xi,Y = yj) IP (Y = yj|X = xi) = IP (X = xi) f(xi, yj) f(xi, yj) = = Pn . f1(xi) j=1 f(xi, yj) So the conditional distribution of Y given X = xi f(xi, yj) f(xi, yj) fY |X (yj|xi) = = Pn . f1(xi) j=1 f(xi, yj) RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 15 Probability theory Its expectation is X E (Y |X = xi) = yjfY |X (yj|xi) j P j yjf(xi, yj) = P . j f(xi, yj) RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 16 Probability theory Density case. If (X, Y ) has density f(x, y), R ∞ X has density f1(x) := −∞ f(x, y)dy, R ∞ Y has density f2(y) := −∞ f(x, y)dx. The conditional density of Y given X = x is: f(x, y) f(x, y) f (y|x) := = . Y |X f (x) R ∞ 1 −∞ f(x, y)dy Its expectation is Z ∞ E (Y |X = x) = yfY |X (y|x)dy −∞ R ∞ −∞ yf(x, y)dy = R ∞ . f(x, y)dy RSITÄT V E U −∞ I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 17 Probability theory General case. Suppose that G is a sub-σ-algebra of F, G ⊂ F If Y is a non-negative random variable with E Y < ∞, then Z Q(B) := Y dIP (B ∈ G) B is non-negative, σ-additive – because Z X Z Y dIP = Y dIP B n Bn if B = ∪nBn, Bn disjoint – and defined on the σ-algebra G, so is a measure on G.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    357 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us