Transistors 101

Transistors 101

Nanotechnology 101 Series Transistors 101 Mark Lundstrom Purdue University Network for Computational Nanotechnology West Lafayette, IN USA NCN www.nanohub.org 1 what to transistors do? 2 Field-Effect Transistor Lillienfield, 1925 Heil, 1935 Bardeen, Schockley, and Brattain, 1947 “The transistor was probably the most important invention of the 20th century,” Ira Flatow, Transistorized! www.pbs.org/transistor 3 transistors integrated circuit Intel 4004 Kilby and Noyce (1958, 1959) Hoff (1971) • junction transistor, 1951 • commercial IC’s, 1961 • silicon BJT, 1954 • PMOS IC’s, 1963 ~2000 transistors • MOSFET, 1960 • CMOS invented, 1963 • NMOS IC’s, 1970 4 silicon microelectronics Silicon wafer (300 mm) Silicon “chip” (~ 2 cm x 2 cm) MPU ROM DSP Control logic RAM analog Intel TI cell phone chip 5 Transistor scaling ~ L Each technology generation: (scaling) L " L 2 A " A 2 Number of transistors per chip doubles (Moore’s Law) ! ! 6 Moore’s Law http://public.itrs.net/ > - - ) > - 10 10000 s - r ) e s t n e o r m c o i 1 1000 n m a ( n ( e z e i z s i s e 0.1 100 r e u r t u a t e nanoelectronics a F 0.01 10 e F 70 80 90 00 10 20 Year--> L = 6 nm (IBM, 2002) L = 5 nm (NEC, 20703) applications symbol switch amplifier D D D G G G S S S 8 EE fundamentals 1) Voltage 2) Current 3) Resistance 4) I-V characteristics resistor voltage source current source 5) Metals, insulators, and semiconductors 9 voltage potential energy = mgh h FG ground 10 voltage + + + + + + + + + + + + + + ++ V = E d Volts d electric field, E force F = qE - - - - - - - - - - - - - - - - - - - - - ground: V = 0 potential energy: E = qE d Joules 11 voltage + V = 1.5 V I - 12 current I + + + + + + + + + ++ I - - - - - - - - - Q I = C/sec = amperes " 13 ! resistance R I resistance (ohms W) 14 current-voltage characteristic decreasing R I increasing R V V Ohm’s Law: I = R 15 ! ideal voltage source I I + V LOAD V 0- 0 V 16 ideal current source + I I 0 + LOAD V I0 - V - 17 transistor I D + ? VDS G V VGS S - 18 metal I • good conductors Au Ag • resistance low Cu • conduction by electrons 19 insulator I glass • very poor conductors quartz • resistance very high SiO2 20 semiconductor I Si resistance greater than a Ge metal (~ 1 W) but less than an insulator (~ 106 W) GaAs 21 semiconductor doping I intrinsic semiconductor: e.g. pure Si doped semiconductor: < 1% ‘impurities’ Si p-type: boron impurities conduction by + charges n-type: phosphorus impurities conduction by - charges22 EE fundamentals √ 1) Voltage √ 2) Current √ 3) Resistance √ 4) I-V characteristics resistor voltage source current source √ 5) Metals, insulators, and semiconductors 23 building a transistor n+ poly Si SiO2 p-type silicon 24 building a transistor source gate drain n+ poly Si n+ Si p-type silicon 25 S G D 26 transistor - + VDS I D VG < VT source gate drain n+ Si p-type silicon 27 transistor I D VDS 28 transistor - + VDS I D VG > VT source gate drain n+ Si - - p-type silicon 29 transistor I D VDS 30 transistor - + VDS I D VG > VT source gate drain + - - n Si -- - p-type silicon 31 transistor: a voltage controlled resistor? I D increasing VG VDS 32 real transistors VGS G + + + + - - - - ID S D VDS VDS 33 real transistors VGS ID ID VGS VDS VDS 34 real transistors V ID GS G S D VDS VDS why does the current saturate? 35 MOSFET energy band diagrams electron energy vs. position S G D VD≈ 0V VD= VDD E = -q V 36 low VDS I1 I2 I1, I2 ~ VG ID = I1 - I2 VD = 0: I1 = 12 ID = 0 ID VD > 0: VG2 I1 > 12 V G1 ID > 0 37 VDS high VDS I1 I2 I1, ~ VG I2 ~ 0 I D I = I ~ V VG2 D 1 G VG1 38 VDS complementary CMOS VDD P-channel MOSFET VOUT VIN N-channel MOSFET 39 CMOS G G S D S D n+ Si p+ Si p-type silicon n-type silicon n-MOS: VGS > 0 p-MOS: VGS < 0 40 CMOS inverter VDD VDD P > - - T V U OUT O VIN V V N DD VIN--> “transfer characteristic” 41 CMOS inverter ID VDD > - - T U O V VDD V --> IN VDS flatter characteristic sharp transition (small dependence of I on V ) separates zero and one D DS gives sharp transition 42 Two input CMOS NAND gate V AND dd A B C 0 0 0 0 1 0 P1 P2 1 0 0 V 1 1 1 Cout V A N1 in1 NAND A B C V 0 0 1 Bin2 N2 0 1 1 1 0 1 1 1 0 43 CMOS Amplifier VDD gain VDD > - v - out VOUT T U VIN O V VDD VIN--> vin 44 transistors terminal 1 point contact transistor bipolar transistor I1 MOSFET JFET SOI MOSFET FinFET control MODFET (HEMT) heterojunction bipolar transistor velocity modulation transistor terminal 2 45.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    45 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us