Chapter 2 Basic Concepts in RF Design

Chapter 2 Basic Concepts in RF Design

<p>Chapter 2&nbsp;Basic Concepts in <br>RF Design </p><p>1</p><p>Sections to be covered </p><p>• 2.1&nbsp;General Considerations • 2.2&nbsp;Effects of Nonlinearity </p><p>• 2.3&nbsp;Noise • 2.4&nbsp;Sensitivity and Dynamic Range • 2.5&nbsp;Passive Impedance Transformation </p><p>2</p><p>Chapter Outline </p><p><strong>Nonlinearity </strong><br><strong>Noise </strong><br><strong>Impedance </strong></p><p><strong>Transformation </strong></p><p> <strong>Harmonic Distortion </strong> <strong>Compression </strong> <strong>Intermodulation </strong><br> <strong>Noise Spectrum </strong> <strong>Device Noise </strong> <strong>Noise in Circuits </strong><br> <strong>Series-Parallel </strong><br><strong>Conversion </strong><br> <strong>Matching Networks </strong></p><p>3</p><p>The Big Picture: Generic RF <br>Transceiver </p><p><strong>Overall transceiver </strong></p><p> <strong>Signals are upconverted/downconverted at TX/RX, by an oscillator controlled by a Frequency Synthesizer. </strong></p><p>4</p><p>General Considerations: Units in RF Design </p><p>Voltage gain: </p><p><em>rms </em>value </p><p>Power gain: </p><p> These two quantities are equal (in dB) only if the <em>input and output </em></p><p><em>impedance are equal . </em></p><p> Example: </p><p> an amplifier having an input resistance of <em>R</em><sub style="top: 0.37em;">0 </sub>(e.g., 50 Ω) and driving a load resistance of <em>R</em><sub style="top: 0.37em;">0 </sub>: </p><p>5</p><p>where <em>V</em><sub style="top: 0.41em;">out </sub>and <em>V</em><sub style="top: 0.41em;">in </sub>are <em>rms </em>value. </p><p>General Considerations: Units in RF Design </p><p>“dBm” </p><p> The absolute signal levels are often expressed in dBm (not in watts or volts); </p><p> Used for power quantities,&nbsp;the unit dBm refers to “dB’s above </p><p>1mW”. </p><p> To express the signal power, <em>P</em><sub style="top: 0.4127em;"><em>sig</em></sub>, in dBm, we write </p><p>6</p><p>Example of Units in RF </p><p><strong>An amplifier senses a sinusoidal signal and delivers a power of 0 dBm to a load resistance of 50 Ω. Determine the peak-to-peak voltage swing across the load. </strong></p><p><strong>Solution: </strong></p><p> a sinusoid signal having a peak-to-peak amplitude of <em>V</em><sub style="top: 0.41em;">pp </sub></p><p> an <em>rms </em>value of <em>V</em><sub style="top: 0.41em;">pp</sub>/(2√2), </p><p> 0dBm is equivalent to 1mW, </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>where R</strong><sub style="top: 0.33em;"><strong>L</strong></sub><strong>= 50 Ω </strong></li><li style="flex:1"><strong>thus, </strong></li></ul><p></p><p>7</p><p>Example of Units in RF </p><p><strong>A GSM receiver senses a narrowband (modulated) signal having a level of -100 dBm. If the front-end amplifier provides a voltage gain of 15 dB, calculate the peak-to-peak voltage swing at the output of the amplifier. </strong></p><p><strong>Solution: </strong></p><p> <strong>suppose the input and output impedance are equal. </strong> <strong>convert the received signal level to voltage: </strong></p><p> <strong>-100 dBm </strong><br> <strong>is 100 dB below 632 mV</strong><sub style="top: 0.37em;"><strong>pp</strong></sub><strong>. </strong><br> <strong>100 dB for voltage quantities is equivalent to 10</strong><sup style="top: -0.45em;"><strong>5</strong></sup><strong>. </strong></p><p> <strong>-100 dBm is equivalent to 6.32 μV</strong><sub style="top: 0.37em;"><strong>pp</strong></sub><strong>. </strong></p><p> <strong>This input level is amplified by 15 dB (≈ 5.62), </strong></p><p> <strong>The output swing is 35.5 μV</strong><sub style="top: 0.3705em;"><strong>pp</strong></sub><strong>. </strong></p><p> <strong>Notice: For a narrowband (not sinusoid) 0-dBm signal, it is still possible to </strong></p><p>8</p><p><strong>approximate the (average) peak-to-peak swing as 632mV. </strong></p><p>Voltage vs Power </p><p> Why the output <em>voltage </em>of the amplifier is of interest in this example? </p><p>– If&nbsp;the circuit following the amplifier does not present a 50-<strong>Ω </strong>input impedance, the power gain and voltage gain are not equal in dB. </p><p>– Mostly,&nbsp;the next stage may exhibit a purely capacitive input impedance, thereby requiring no signal “power”. </p><p>• one&nbsp;stage drives the gate of the transistor in the next stage. </p><p>9</p><p>dBm Used at Interfaces Without Power <br>Transfer </p><p> We use “<strong>dBm</strong>” at interfaces that do not necessarily entail power transfer. </p><p>(a) LNA driving a pure-capacitive impedance with a 632-mV<sub style="top: 0.37em;">pp </sub>swing, delivering no average power. </p><p>How about the power delivery? </p><p>Assumption:  attaching an ideal voltage buffer to node <em>X </em>and drive a 50-Ω load. </p><p> the signal at node <em>X </em>has a level of 0 dBm,  means that <em>if </em>this signal were applied to a 50-Ω load, <em>then </em>it would deliver 1 mW. </p><p>(b) Use of fictitious buffer to visualize the </p><p>signal level in “<strong>dBm</strong>” </p><p>10 </p><p>voltage buffer </p><p>General Considerations: linearity </p><p> <strong>A system is linear if its output can be expressed as a linear combination </strong><br><strong>(superposition) of responses to individual inputs. </strong></p><p>For arbitrary <em>a </em>and <em>b</em>, it holds that:  Any system that does not satisfy this condition is nonlinear. Example: </p><p> nonzero initial conditions or dc offsets cause nonlinearity; </p><p> However, we often relax the rule ---------- accommodate these two effects. </p><p>11 </p><p>Nonlinearity: Memoryless and Static System </p><p> <strong>Memoryless or static : if its output does not depend on the past values of its input; </strong></p><p><strong>Memoryless, linear </strong></p><p> <strong>The input/output characteristic of a memoryless nonlinear system can be approximated with a polynomial </strong></p><p><strong>Memoryless, nonlinear </strong></p><p>If the system is time variant,<em>α</em><sub style="top: 0.285em;"><em>j </em></sub>would be general functions of time. </p><p>12 </p><p>Nonlinearity: Memoryless and Static System </p><p>Example of a memoryless nonlinear circuit: <br>If M<sub style="top: 0.41em;">1 </sub>operates in the saturation region and can be approximated as a square-law device [Lee] </p><p>1</p><p>ꢇ<br>ꢈ</p><p>2</p><p>ꢀ<sub style="top: 0.41em;">ꢁ </sub>= ꢂ<sub style="top: 0.41em;">ꢃ</sub>ꢄ<sub style="top: 0.41em;">ꢅꢆ </sub></p><p>ꢉ −&nbsp;ꢉ<sub style="top: 0.41em;">ꢋꢌ </sub></p><p>ꢊꢃ </p><p>2</p><p>then <br>Common-source stage </p><p> <strong>In this idealized case, the circuit displays only second-order nonlinearity. </strong></p><p>13 </p><p>Nonlinearity: Odd symmetry </p><p>A system has “<strong>odd symmetry</strong>” if <em>y</em>(<em>t</em>) is an odd function of <em>x</em>(<em>t</em>), i.e., if the response to <em>–x(t) </em>is the negative of that to <em>x(t). </em></p><p><em>y</em>(<em>t</em>) = α<sub style="top: 0.5031em;">0 </sub>+α<sub style="top: 0.5031em;">1</sub><em>x</em>(<em>t</em>) +α<sub style="top: 0.5031em;">2 </sub><em>x</em><sup style="top: -0.8741em;">2 </sup>(<em>t</em>) +α<sub style="top: 0.5031em;">3</sub><em>x</em><sup style="top: -0.8741em;">3 </sup>(<em>t</em>) + </p><p><em>y</em>(<em>t</em>) is odd symmetry if <em>α</em><sub style="top: 0.37em;"><em>j</em></sub><em>=0 </em>for even <em>j</em>. </p><p>Such a system is sometimes called “balanced”, as exemplified by the differential pair shown in the next page. </p><p>14 </p><p>Example of Polynomial Approximation </p><p><strong>For square-law MOS transistors operating in saturation, the characteristic “differential pair circuit” can be expressed as </strong></p><p><strong>If the differential input is small, approximate the characteristic by a polynomial. </strong></p><p><strong>Assuming Approximation (Taylor Expansions) gives us: </strong></p><p></p><ul style="display: flex;"><li style="flex:1">Differential pair </li><li style="flex:1">Input/output characteristic </li></ul><p></p><p>15 </p><p>Example of Polynomial Approximation </p><p> Observations </p><p> The first term represents linear operation, <br> the small-signal voltage gain of the circuit (-<em>g</em><sub style="top: 0.4107em;">m</sub><em>R</em><sub style="top: 0.4107em;">D</sub>); </p><p> Due to symmetry, even-order nonlinear terms are absent; </p><p> Notice: square-law devices yield a third-order characteristic in </p><p>this case. </p><p>16 </p><p>General Considerations: Time Variance </p><p> <strong>A system is time-invariant if a time shift in its input results in the same time shift in its output. </strong></p><p><strong>If </strong></p><p><strong>y(t) = f [x(t)] </strong></p><p><strong>then </strong></p><p><strong>y(t-τ) = f [x(t-τ)] </strong></p><p></p><ul style="display: flex;"><li style="flex:1">Time Variance </li><li style="flex:1">Nonlinearity </li></ul><p></p><p>Do not be confused by these two attributes. </p><p>17 </p><p>Example of Time Variance </p><p><strong>Plot the output waveform of the circuit in Fig. 1: </strong></p><p> <strong>v</strong><sub style="top: 0.37em;"><strong>in1 </strong></sub><strong>= A</strong><sub style="top: 0.37em;"><strong>1 </strong></sub><strong>cos ω</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>t </strong></p><p> <strong>v</strong><sub style="top: 0.37em;"><strong>in2 </strong></sub><strong>= A</strong><sub style="top: 0.37em;"><strong>2 </strong></sub><strong>cos(1.25ω</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>t ) </strong></p><p><strong>Solution: </strong></p><p>Fig.1 </p><p><strong>Switch: v</strong><sub style="top: 0.37em;"><strong>out </strong></sub><strong>tracks v</strong><sub style="top: 0.37em;"><strong>in2 </strong></sub><strong>if v</strong><sub style="top: 0.37em;"><strong>in1 </strong></sub><strong>&gt; 0 and is pulled down to zero by R</strong><sub style="top: 0.37em;"><strong>1 </strong></sub><strong>if v</strong><sub style="top: 0.37em;"><strong>in1 </strong></sub><strong>&lt; 0. </strong><strong>v</strong><sub style="top: 0.37em;"><strong>out </strong></sub><strong>is equal to the product of v</strong><sub style="top: 0.37em;"><strong>in2 </strong></sub><strong>and a square wave toggling between 0 and 1. </strong><strong>This is an example of RF “mixers”. </strong></p><p>18 </p><p><strong>A time shift in input does not result in the same time shift in output. </strong></p><p>Time Variance: Generation of Other Frequency <br>Components </p><p>S(t) denotes a square wave toggling between 0 and 1 with a frequency of </p><p><em>f</em><sub style="top: 0.37em;">1</sub>=<em>ω</em><sub style="top: 0.37em;">1</sub>/(2π) </p><p>The spectrum of square wave: a train of impulses whose amplitude follow a sinc envelop. </p><p>Illustration: </p><p><em>T</em><sub style="top: 0.37em;">1</sub>= 2π /<em>ω</em><sub style="top: 0.37em;">1 </sub></p><p>Multiplication in time domain <br>Convolution in frequency domain </p><p> <strong>A linear system can generate frequency components that do not exist in t</strong><sub style="top: 0.1542em;">1</sub><strong>h</strong><sub style="top: 0.1542em;">9</sub><strong>e input signal when system is time variant. </strong></p><p>Effects of nonlinearity <br>• ?&nbsp;Frequency • ?&nbsp;Amplitude • Harmonic&nbsp;distortion (谐波失真) • Gain&nbsp;compression (增益压缩) • Cross&nbsp;modulation (互调) • Intermodulation&nbsp;(交叉调制) </p><p>20 </p><p>Notice </p><p> Analog and RF circuits can be approximated with a linear model for </p><p>small-signal operation. </p><p> In general, we have </p><p> memoryless time-variant systems with input/output characteristic : </p><p><em>y</em>(<em>t</em>) ≈ α<sub style="top: 0.5015em;">1</sub><em>x</em>(<em>t</em>) +α<sub style="top: 0.5015em;">2 </sub><em>x</em><sup style="top: -0.8713em;">2 </sup>(<em>t</em>) +α<sub style="top: 0.5015em;">3</sub><em>x</em><sup style="top: -0.8713em;">3 </sup>(<em>t</em>) </p><p> <em>α</em><sub style="top: 0.41em;"><em>1 </em></sub>is considered as the small-signal gain. </p><p> The nonlinearity effects primarily arise from the third-order term <em>α</em><sub style="top: 0.4107em;"><em>3</em></sub><em>. </em></p><p>21 </p><p>Effects of nonlinearity <br>• Harmonic&nbsp;distortion (谐波失真) • Gain&nbsp;compression (增益压缩) • Cross&nbsp;modulation (互调) • Intermodulation&nbsp;(交叉调制) </p><p>22 </p><p>Effects of Nonlinearity: Harmonic Distortion </p><p>If a sinusoid is applied to a nonlinear system:  the output exhibits frequency components that are integer multiplies (“harmonics”) of the input frequency. </p><p>input: </p><p>output: </p><p><em>x</em>(<em>t</em>) = <em>A</em>cosω<em>t </em></p><p><em>y</em>(<em>t</em>) ≈ α<sub style="top: 0.5023em;">1</sub><em>x</em>(<em>t</em>) +α<sub style="top: 0.5023em;">2 </sub><em>x</em><sup style="top: -0.8727em;">2 </sup>(<em>t</em>) +α<sub style="top: 0.5023em;">3</sub><em>x</em><sup style="top: -0.8727em;">3 </sup>(<em>t</em>) </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>DC </strong></li><li style="flex:1"><strong>Fundamental </strong></li><li style="flex:1"><strong>Second </strong></li><li style="flex:1"><strong>Third </strong></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><strong>Harmonic </strong></li><li style="flex:1"><strong>Harmonic </strong></li></ul><p></p><p><strong>Arising from second-order nonlinearity </strong><br><strong>The term with the input frequency </strong></p><p>23 </p><p>Observations </p><p><em>y</em>(<em>t</em>) ≈ α<sub style="top: 0.5023em;">1</sub><em>x</em>(<em>t</em>) +α<sub style="top: 0.5023em;">2 </sub><em>x</em><sup style="top: -0.8727em;">2 </sup>(<em>t</em>) +α<sub style="top: 0.5023em;">3</sub><em>x</em><sup style="top: -0.8727em;">3 </sup>(<em>t</em>) </p><p> Even-order harmonics result from <em>α</em><sub style="top: 0.495em;"><em>j </em></sub>with even <em>j </em>and vanish if the system has odd symmetry, </p><p> If mismatches corrupt the symmetry, what will happen? </p><p> The amplitude of the <em>n</em><sup style="top: -0.6em;">th </sup>harmonic grows in proportion to? </p><p><em>n</em></p><p> <em>A </em>. </p><p>24 </p><p>Example of Harmonic Distortion in Mixer </p><p><strong>An analog multiplier “mixes” its two inputs, producing y(t) = kx</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>(t)x</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>(t), where k is a constant. Assume x</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>(t) = A</strong><sub style="top: 0.37em;"><strong>1 </strong></sub><strong>cos ω</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>t and x</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>(t) = A</strong><sub style="top: 0.37em;"><strong>2 </strong></sub><strong>cos ω</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>t. Question: </strong></p><p><strong>(a) If the mixer is ideal, determine the output frequency components. </strong></p><p><strong>Solution: </strong></p><p><strong>(a) </strong></p><p>Analog multiplier </p><p><strong>The output contains the sum and difference frequencies. </strong><strong>These are “desired” components. </strong></p><p>25 </p><p>Example of Harmonic Distortion in Mixer </p><p><strong>An analog multiplier “mixes” its two inputs below, producing y(t) = kx</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>(t)x</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>(t), where k is a constant. Assume x</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>(t) = A</strong><sub style="top: 0.37em;"><strong>1 </strong></sub><strong>cos ω</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>t and x</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>(t) = A</strong><sub style="top: 0.37em;"><strong>2 </strong></sub><strong>cos ω</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>t. (a)If the mixer is ideal, determine the output frequency components. </strong></p><p><strong>(b) If the input port sensing x</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>(t) suffers from third-order nonlinearity, determine the output frequency components. </strong></p><p><strong>Solution: </strong></p><p><strong>Third Harmonic of x</strong><sub style="top: 0.41em;"><strong>2</strong></sub><strong>(t) </strong></p><p><strong>(b) </strong></p><p>Analog multiplier </p><p><strong>The mixers produces two “spurious” components at&nbsp;ω</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>+3ω</strong><sub style="top: 0.37em;"><strong>2 </strong></sub><strong>and ω</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>-3ω</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>, </strong></p><p>26 </p><p> <strong>Cause other problems… </strong><br><strong>These are “undesired” components that are difficult to remove by filter. </strong></p><p><strong>Example of Harmonics on GSM Signal </strong></p><p><strong>The transmitter in a 900-MHz GSM cellphone delivers 1 W of power to the antenna. Explain the effect of the harmonics of this signal. </strong></p><p>The second harmonic? </p><p> falls within another GSM cellphone band around 1800 MHz;  Must be sufficiently small to impact the other users in that band. </p><p>The third, fourth, and fifth harmonics? </p><p> do not coincide with any popular bands;  but must still remain below a certain level imposed by regulatory organizations in each country. (中国工信部无线电管理局/US FCC) </p><p>The sixth harmonic? </p><p> falls in the 5-GHz band used in wireless local area networks (WLANs). </p><p><strong>fundamental </strong></p><p>27 </p><p>Effects of nonlinearity <br>• Harmonic&nbsp;distortion (谐波) </p><p>• Gain&nbsp;compression (增益压缩) </p><p>• Cross&nbsp;modulation (互调) • Intermodulation&nbsp;(交叉调制) </p><p>28 </p><p>Gain Compression– Sign of <em>α</em><sub style="top: 0.66em;"><em>1</em></sub><em>, α</em><sub style="top: 0.66em;"><em>3 </em></sub></p><p><em>y</em>(<em>t</em>) α<sub style="top: 0.4804em;">1</sub><em>x</em>(<em>t</em>) +α<sub style="top: 0.4804em;">2 </sub><em>x</em><sup style="top: -0.8345em;">2 </sup>(<em>t</em>) +α<sub style="top: 0.4804em;">3</sub><em>x</em><sup style="top: -0.8345em;">3 </sup>(<em>t</em>) </p><p>≈</p><p><em>x</em>(<em>t</em>) = <em>A</em>cosω<em>t </em></p><p> The gain of fundamental component <em>ω </em>is equal to <em>α</em><sub style="top: 0.41em;"><em>1 </em></sub>+ 3<em>α</em><sub style="top: 0.41em;"><em>3</em></sub>A<sup style="top: -0.5em;">2</sup>/4  varied as <em>A </em>becomes larger. </p><p><strong>Compressive: </strong></p><p> <strong>The term α</strong><sub style="top: 0.33em;"><strong>3</strong></sub><strong>x</strong><sup style="top: -0.4em;"><strong>3 </strong></sup><strong>“bends” the characteristic for sufficiently large x, </strong><br> <strong>decreasing the gain as the input amplitude increases. </strong></p><p><strong>Expansive: </strong></p><p> <strong>expanding the gain as the input amplitude increases </strong></p><p>29 </p><p> <strong>Most RF circuit of interest are compressive, we focus on this type. </strong></p><p>Gain Compression: 1-dB Compression Point </p><p> With <em>α</em><sub style="top: 0.37em;"><em>1</em></sub><em>α</em><sub style="top: 0.37em;"><em>3 </em></sub>&lt;0, the fundamental gain is equal to <em>α</em><sub style="top: 0.37em;"><em>1 </em></sub>+ 3<em>α</em><sub style="top: 0.37em;"><em>3</em></sub>A<sup style="top: -0.45em;">2</sup>/4 and falls as A rises. </p><p> <strong>1-dB compression point: </strong>defined as the input signal level that causes the small signal gain to drop by 1dB. </p><p>small signal gain large signal gain </p><p>Plotted on a log-log scale as a function of the input level </p><p> Output level, A<sub style="top: 0.37em;">out</sub>, falls below its ideal value by 1 dB at the 1-dB compression point, </p><p>30 </p><p>A<sub style="top: 0.37em;">in,1dB </sub></p><p>.</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    125 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us