
<p>Chapter 2 Basic Concepts in <br>RF Design </p><p>1</p><p>Sections to be covered </p><p>• 2.1 General Considerations • 2.2 Effects of Nonlinearity </p><p>• 2.3 Noise • 2.4 Sensitivity and Dynamic Range • 2.5 Passive Impedance Transformation </p><p>2</p><p>Chapter Outline </p><p><strong>Nonlinearity </strong><br><strong>Noise </strong><br><strong>Impedance </strong></p><p><strong>Transformation </strong></p><p> <strong>Harmonic Distortion </strong> <strong>Compression </strong> <strong>Intermodulation </strong><br> <strong>Noise Spectrum </strong> <strong>Device Noise </strong> <strong>Noise in Circuits </strong><br> <strong>Series-Parallel </strong><br><strong>Conversion </strong><br> <strong>Matching Networks </strong></p><p>3</p><p>The Big Picture: Generic RF <br>Transceiver </p><p><strong>Overall transceiver </strong></p><p> <strong>Signals are upconverted/downconverted at TX/RX, by an oscillator controlled by a Frequency Synthesizer. </strong></p><p>4</p><p>General Considerations: Units in RF Design </p><p>Voltage gain: </p><p><em>rms </em>value </p><p>Power gain: </p><p> These two quantities are equal (in dB) only if the <em>input and output </em></p><p><em>impedance are equal . </em></p><p> Example: </p><p> an amplifier having an input resistance of <em>R</em><sub style="top: 0.37em;">0 </sub>(e.g., 50 Ω) and driving a load resistance of <em>R</em><sub style="top: 0.37em;">0 </sub>: </p><p>5</p><p>where <em>V</em><sub style="top: 0.41em;">out </sub>and <em>V</em><sub style="top: 0.41em;">in </sub>are <em>rms </em>value. </p><p>General Considerations: Units in RF Design </p><p>“dBm” </p><p> The absolute signal levels are often expressed in dBm (not in watts or volts); </p><p> Used for power quantities, the unit dBm refers to “dB’s above </p><p>1mW”. </p><p> To express the signal power, <em>P</em><sub style="top: 0.4127em;"><em>sig</em></sub>, in dBm, we write </p><p>6</p><p>Example of Units in RF </p><p><strong>An amplifier senses a sinusoidal signal and delivers a power of 0 dBm to a load resistance of 50 Ω. Determine the peak-to-peak voltage swing across the load. </strong></p><p><strong>Solution: </strong></p><p> a sinusoid signal having a peak-to-peak amplitude of <em>V</em><sub style="top: 0.41em;">pp </sub></p><p> an <em>rms </em>value of <em>V</em><sub style="top: 0.41em;">pp</sub>/(2√2), </p><p> 0dBm is equivalent to 1mW, </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>where R</strong><sub style="top: 0.33em;"><strong>L</strong></sub><strong>= 50 Ω </strong></li><li style="flex:1"><strong>thus, </strong></li></ul><p></p><p>7</p><p>Example of Units in RF </p><p><strong>A GSM receiver senses a narrowband (modulated) signal having a level of -100 dBm. If the front-end amplifier provides a voltage gain of 15 dB, calculate the peak-to-peak voltage swing at the output of the amplifier. </strong></p><p><strong>Solution: </strong></p><p> <strong>suppose the input and output impedance are equal. </strong> <strong>convert the received signal level to voltage: </strong></p><p> <strong>-100 dBm </strong><br> <strong>is 100 dB below 632 mV</strong><sub style="top: 0.37em;"><strong>pp</strong></sub><strong>. </strong><br> <strong>100 dB for voltage quantities is equivalent to 10</strong><sup style="top: -0.45em;"><strong>5</strong></sup><strong>. </strong></p><p> <strong>-100 dBm is equivalent to 6.32 μV</strong><sub style="top: 0.37em;"><strong>pp</strong></sub><strong>. </strong></p><p> <strong>This input level is amplified by 15 dB (≈ 5.62), </strong></p><p> <strong>The output swing is 35.5 μV</strong><sub style="top: 0.3705em;"><strong>pp</strong></sub><strong>. </strong></p><p> <strong>Notice: For a narrowband (not sinusoid) 0-dBm signal, it is still possible to </strong></p><p>8</p><p><strong>approximate the (average) peak-to-peak swing as 632mV. </strong></p><p>Voltage vs Power </p><p> Why the output <em>voltage </em>of the amplifier is of interest in this example? </p><p>– If the circuit following the amplifier does not present a 50-<strong>Ω </strong>input impedance, the power gain and voltage gain are not equal in dB. </p><p>– Mostly, the next stage may exhibit a purely capacitive input impedance, thereby requiring no signal “power”. </p><p>• one stage drives the gate of the transistor in the next stage. </p><p>9</p><p>dBm Used at Interfaces Without Power <br>Transfer </p><p> We use “<strong>dBm</strong>” at interfaces that do not necessarily entail power transfer. </p><p>(a) LNA driving a pure-capacitive impedance with a 632-mV<sub style="top: 0.37em;">pp </sub>swing, delivering no average power. </p><p>How about the power delivery? </p><p>Assumption: attaching an ideal voltage buffer to node <em>X </em>and drive a 50-Ω load. </p><p> the signal at node <em>X </em>has a level of 0 dBm, means that <em>if </em>this signal were applied to a 50-Ω load, <em>then </em>it would deliver 1 mW. </p><p>(b) Use of fictitious buffer to visualize the </p><p>signal level in “<strong>dBm</strong>” </p><p>10 </p><p>voltage buffer </p><p>General Considerations: linearity </p><p> <strong>A system is linear if its output can be expressed as a linear combination </strong><br><strong>(superposition) of responses to individual inputs. </strong></p><p>For arbitrary <em>a </em>and <em>b</em>, it holds that: Any system that does not satisfy this condition is nonlinear. Example: </p><p> nonzero initial conditions or dc offsets cause nonlinearity; </p><p> However, we often relax the rule ---------- accommodate these two effects. </p><p>11 </p><p>Nonlinearity: Memoryless and Static System </p><p> <strong>Memoryless or static : if its output does not depend on the past values of its input; </strong></p><p><strong>Memoryless, linear </strong></p><p> <strong>The input/output characteristic of a memoryless nonlinear system can be approximated with a polynomial </strong></p><p><strong>Memoryless, nonlinear </strong></p><p>If the system is time variant,<em>α</em><sub style="top: 0.285em;"><em>j </em></sub>would be general functions of time. </p><p>12 </p><p>Nonlinearity: Memoryless and Static System </p><p>Example of a memoryless nonlinear circuit: <br>If M<sub style="top: 0.41em;">1 </sub>operates in the saturation region and can be approximated as a square-law device [Lee] </p><p>1</p><p>ꢇ<br>ꢈ</p><p>2</p><p>ꢀ<sub style="top: 0.41em;">ꢁ </sub>= ꢂ<sub style="top: 0.41em;">ꢃ</sub>ꢄ<sub style="top: 0.41em;">ꢅꢆ </sub></p><p>ꢉ − ꢉ<sub style="top: 0.41em;">ꢋꢌ </sub></p><p>ꢊꢃ </p><p>2</p><p>then <br>Common-source stage </p><p> <strong>In this idealized case, the circuit displays only second-order nonlinearity. </strong></p><p>13 </p><p>Nonlinearity: Odd symmetry </p><p>A system has “<strong>odd symmetry</strong>” if <em>y</em>(<em>t</em>) is an odd function of <em>x</em>(<em>t</em>), i.e., if the response to <em>–x(t) </em>is the negative of that to <em>x(t). </em></p><p><em>y</em>(<em>t</em>) = α<sub style="top: 0.5031em;">0 </sub>+α<sub style="top: 0.5031em;">1</sub><em>x</em>(<em>t</em>) +α<sub style="top: 0.5031em;">2 </sub><em>x</em><sup style="top: -0.8741em;">2 </sup>(<em>t</em>) +α<sub style="top: 0.5031em;">3</sub><em>x</em><sup style="top: -0.8741em;">3 </sup>(<em>t</em>) + </p><p><em>y</em>(<em>t</em>) is odd symmetry if <em>α</em><sub style="top: 0.37em;"><em>j</em></sub><em>=0 </em>for even <em>j</em>. </p><p>Such a system is sometimes called “balanced”, as exemplified by the differential pair shown in the next page. </p><p>14 </p><p>Example of Polynomial Approximation </p><p><strong>For square-law MOS transistors operating in saturation, the characteristic “differential pair circuit” can be expressed as </strong></p><p><strong>If the differential input is small, approximate the characteristic by a polynomial. </strong></p><p><strong>Assuming Approximation (Taylor Expansions) gives us: </strong></p><p></p><ul style="display: flex;"><li style="flex:1">Differential pair </li><li style="flex:1">Input/output characteristic </li></ul><p></p><p>15 </p><p>Example of Polynomial Approximation </p><p> Observations </p><p> The first term represents linear operation, <br> the small-signal voltage gain of the circuit (-<em>g</em><sub style="top: 0.4107em;">m</sub><em>R</em><sub style="top: 0.4107em;">D</sub>); </p><p> Due to symmetry, even-order nonlinear terms are absent; </p><p> Notice: square-law devices yield a third-order characteristic in </p><p>this case. </p><p>16 </p><p>General Considerations: Time Variance </p><p> <strong>A system is time-invariant if a time shift in its input results in the same time shift in its output. </strong></p><p><strong>If </strong></p><p><strong>y(t) = f [x(t)] </strong></p><p><strong>then </strong></p><p><strong>y(t-τ) = f [x(t-τ)] </strong></p><p></p><ul style="display: flex;"><li style="flex:1">Time Variance </li><li style="flex:1">Nonlinearity </li></ul><p></p><p>Do not be confused by these two attributes. </p><p>17 </p><p>Example of Time Variance </p><p><strong>Plot the output waveform of the circuit in Fig. 1: </strong></p><p> <strong>v</strong><sub style="top: 0.37em;"><strong>in1 </strong></sub><strong>= A</strong><sub style="top: 0.37em;"><strong>1 </strong></sub><strong>cos ω</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>t </strong></p><p> <strong>v</strong><sub style="top: 0.37em;"><strong>in2 </strong></sub><strong>= A</strong><sub style="top: 0.37em;"><strong>2 </strong></sub><strong>cos(1.25ω</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>t ) </strong></p><p><strong>Solution: </strong></p><p>Fig.1 </p><p><strong>Switch: v</strong><sub style="top: 0.37em;"><strong>out </strong></sub><strong>tracks v</strong><sub style="top: 0.37em;"><strong>in2 </strong></sub><strong>if v</strong><sub style="top: 0.37em;"><strong>in1 </strong></sub><strong>> 0 and is pulled down to zero by R</strong><sub style="top: 0.37em;"><strong>1 </strong></sub><strong>if v</strong><sub style="top: 0.37em;"><strong>in1 </strong></sub><strong>< 0. </strong><strong>v</strong><sub style="top: 0.37em;"><strong>out </strong></sub><strong>is equal to the product of v</strong><sub style="top: 0.37em;"><strong>in2 </strong></sub><strong>and a square wave toggling between 0 and 1. </strong><strong>This is an example of RF “mixers”. </strong></p><p>18 </p><p><strong>A time shift in input does not result in the same time shift in output. </strong></p><p>Time Variance: Generation of Other Frequency <br>Components </p><p>S(t) denotes a square wave toggling between 0 and 1 with a frequency of </p><p><em>f</em><sub style="top: 0.37em;">1</sub>=<em>ω</em><sub style="top: 0.37em;">1</sub>/(2π) </p><p>The spectrum of square wave: a train of impulses whose amplitude follow a sinc envelop. </p><p>Illustration: </p><p><em>T</em><sub style="top: 0.37em;">1</sub>= 2π /<em>ω</em><sub style="top: 0.37em;">1 </sub></p><p>Multiplication in time domain <br>Convolution in frequency domain </p><p> <strong>A linear system can generate frequency components that do not exist in t</strong><sub style="top: 0.1542em;">1</sub><strong>h</strong><sub style="top: 0.1542em;">9</sub><strong>e input signal when system is time variant. </strong></p><p>Effects of nonlinearity <br>• ? Frequency • ? Amplitude • Harmonic distortion (谐波失真) • Gain compression (增益压缩) • Cross modulation (互调) • Intermodulation (交叉调制) </p><p>20 </p><p>Notice </p><p> Analog and RF circuits can be approximated with a linear model for </p><p>small-signal operation. </p><p> In general, we have </p><p> memoryless time-variant systems with input/output characteristic : </p><p><em>y</em>(<em>t</em>) ≈ α<sub style="top: 0.5015em;">1</sub><em>x</em>(<em>t</em>) +α<sub style="top: 0.5015em;">2 </sub><em>x</em><sup style="top: -0.8713em;">2 </sup>(<em>t</em>) +α<sub style="top: 0.5015em;">3</sub><em>x</em><sup style="top: -0.8713em;">3 </sup>(<em>t</em>) </p><p> <em>α</em><sub style="top: 0.41em;"><em>1 </em></sub>is considered as the small-signal gain. </p><p> The nonlinearity effects primarily arise from the third-order term <em>α</em><sub style="top: 0.4107em;"><em>3</em></sub><em>. </em></p><p>21 </p><p>Effects of nonlinearity <br>• Harmonic distortion (谐波失真) • Gain compression (增益压缩) • Cross modulation (互调) • Intermodulation (交叉调制) </p><p>22 </p><p>Effects of Nonlinearity: Harmonic Distortion </p><p>If a sinusoid is applied to a nonlinear system: the output exhibits frequency components that are integer multiplies (“harmonics”) of the input frequency. </p><p>input: </p><p>output: </p><p><em>x</em>(<em>t</em>) = <em>A</em>cosω<em>t </em></p><p><em>y</em>(<em>t</em>) ≈ α<sub style="top: 0.5023em;">1</sub><em>x</em>(<em>t</em>) +α<sub style="top: 0.5023em;">2 </sub><em>x</em><sup style="top: -0.8727em;">2 </sup>(<em>t</em>) +α<sub style="top: 0.5023em;">3</sub><em>x</em><sup style="top: -0.8727em;">3 </sup>(<em>t</em>) </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>DC </strong></li><li style="flex:1"><strong>Fundamental </strong></li><li style="flex:1"><strong>Second </strong></li><li style="flex:1"><strong>Third </strong></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><strong>Harmonic </strong></li><li style="flex:1"><strong>Harmonic </strong></li></ul><p></p><p><strong>Arising from second-order nonlinearity </strong><br><strong>The term with the input frequency </strong></p><p>23 </p><p>Observations </p><p><em>y</em>(<em>t</em>) ≈ α<sub style="top: 0.5023em;">1</sub><em>x</em>(<em>t</em>) +α<sub style="top: 0.5023em;">2 </sub><em>x</em><sup style="top: -0.8727em;">2 </sup>(<em>t</em>) +α<sub style="top: 0.5023em;">3</sub><em>x</em><sup style="top: -0.8727em;">3 </sup>(<em>t</em>) </p><p> Even-order harmonics result from <em>α</em><sub style="top: 0.495em;"><em>j </em></sub>with even <em>j </em>and vanish if the system has odd symmetry, </p><p> If mismatches corrupt the symmetry, what will happen? </p><p> The amplitude of the <em>n</em><sup style="top: -0.6em;">th </sup>harmonic grows in proportion to? </p><p><em>n</em></p><p> <em>A </em>. </p><p>24 </p><p>Example of Harmonic Distortion in Mixer </p><p><strong>An analog multiplier “mixes” its two inputs, producing y(t) = kx</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>(t)x</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>(t), where k is a constant. Assume x</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>(t) = A</strong><sub style="top: 0.37em;"><strong>1 </strong></sub><strong>cos ω</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>t and x</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>(t) = A</strong><sub style="top: 0.37em;"><strong>2 </strong></sub><strong>cos ω</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>t. Question: </strong></p><p><strong>(a) If the mixer is ideal, determine the output frequency components. </strong></p><p><strong>Solution: </strong></p><p><strong>(a) </strong></p><p>Analog multiplier </p><p><strong>The output contains the sum and difference frequencies. </strong><strong>These are “desired” components. </strong></p><p>25 </p><p>Example of Harmonic Distortion in Mixer </p><p><strong>An analog multiplier “mixes” its two inputs below, producing y(t) = kx</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>(t)x</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>(t), where k is a constant. Assume x</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>(t) = A</strong><sub style="top: 0.37em;"><strong>1 </strong></sub><strong>cos ω</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>t and x</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>(t) = A</strong><sub style="top: 0.37em;"><strong>2 </strong></sub><strong>cos ω</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>t. (a)If the mixer is ideal, determine the output frequency components. </strong></p><p><strong>(b) If the input port sensing x</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>(t) suffers from third-order nonlinearity, determine the output frequency components. </strong></p><p><strong>Solution: </strong></p><p><strong>Third Harmonic of x</strong><sub style="top: 0.41em;"><strong>2</strong></sub><strong>(t) </strong></p><p><strong>(b) </strong></p><p>Analog multiplier </p><p><strong>The mixers produces two “spurious” components at ω</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>+3ω</strong><sub style="top: 0.37em;"><strong>2 </strong></sub><strong>and ω</strong><sub style="top: 0.37em;"><strong>1</strong></sub><strong>-3ω</strong><sub style="top: 0.37em;"><strong>2</strong></sub><strong>, </strong></p><p>26 </p><p> <strong>Cause other problems… </strong><br><strong>These are “undesired” components that are difficult to remove by filter. </strong></p><p><strong>Example of Harmonics on GSM Signal </strong></p><p><strong>The transmitter in a 900-MHz GSM cellphone delivers 1 W of power to the antenna. Explain the effect of the harmonics of this signal. </strong></p><p>The second harmonic? </p><p> falls within another GSM cellphone band around 1800 MHz; Must be sufficiently small to impact the other users in that band. </p><p>The third, fourth, and fifth harmonics? </p><p> do not coincide with any popular bands; but must still remain below a certain level imposed by regulatory organizations in each country. (中国工信部无线电管理局/US FCC) </p><p>The sixth harmonic? </p><p> falls in the 5-GHz band used in wireless local area networks (WLANs). </p><p><strong>fundamental </strong></p><p>27 </p><p>Effects of nonlinearity <br>• Harmonic distortion (谐波) </p><p>• Gain compression (增益压缩) </p><p>• Cross modulation (互调) • Intermodulation (交叉调制) </p><p>28 </p><p>Gain Compression– Sign of <em>α</em><sub style="top: 0.66em;"><em>1</em></sub><em>, α</em><sub style="top: 0.66em;"><em>3 </em></sub></p><p><em>y</em>(<em>t</em>) α<sub style="top: 0.4804em;">1</sub><em>x</em>(<em>t</em>) +α<sub style="top: 0.4804em;">2 </sub><em>x</em><sup style="top: -0.8345em;">2 </sup>(<em>t</em>) +α<sub style="top: 0.4804em;">3</sub><em>x</em><sup style="top: -0.8345em;">3 </sup>(<em>t</em>) </p><p>≈</p><p><em>x</em>(<em>t</em>) = <em>A</em>cosω<em>t </em></p><p> The gain of fundamental component <em>ω </em>is equal to <em>α</em><sub style="top: 0.41em;"><em>1 </em></sub>+ 3<em>α</em><sub style="top: 0.41em;"><em>3</em></sub>A<sup style="top: -0.5em;">2</sup>/4 varied as <em>A </em>becomes larger. </p><p><strong>Compressive: </strong></p><p> <strong>The term α</strong><sub style="top: 0.33em;"><strong>3</strong></sub><strong>x</strong><sup style="top: -0.4em;"><strong>3 </strong></sup><strong>“bends” the characteristic for sufficiently large x, </strong><br> <strong>decreasing the gain as the input amplitude increases. </strong></p><p><strong>Expansive: </strong></p><p> <strong>expanding the gain as the input amplitude increases </strong></p><p>29 </p><p> <strong>Most RF circuit of interest are compressive, we focus on this type. </strong></p><p>Gain Compression: 1-dB Compression Point </p><p> With <em>α</em><sub style="top: 0.37em;"><em>1</em></sub><em>α</em><sub style="top: 0.37em;"><em>3 </em></sub><0, the fundamental gain is equal to <em>α</em><sub style="top: 0.37em;"><em>1 </em></sub>+ 3<em>α</em><sub style="top: 0.37em;"><em>3</em></sub>A<sup style="top: -0.45em;">2</sup>/4 and falls as A rises. </p><p> <strong>1-dB compression point: </strong>defined as the input signal level that causes the small signal gain to drop by 1dB. </p><p>small signal gain large signal gain </p><p>Plotted on a log-log scale as a function of the input level </p><p> Output level, A<sub style="top: 0.37em;">out</sub>, falls below its ideal value by 1 dB at the 1-dB compression point, </p><p>30 </p><p>A<sub style="top: 0.37em;">in,1dB </sub></p><p>.</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages125 Page
-
File Size-