HEAT EXCHANGER FOR SOLAR COLLECTOR LAGUNESVARY A/P GANESAN Thesis submitted in partial fulfillment of the requirements for the awards of Bachelor of Mechanical Engineering Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG JUNE 2013 vii ABSTRACT The objective of this study is to design and simulate an optimum heat exchanger for evacuated tube solar collector. The simulation was carried out in ANSYS FLUENT 14.0 with two different tube designs, spring and S-Shape. Four materials was analysed in this study, copper, aluminium, steel and brass. Both tube designs are varied by three different sizes and four shapes, circular, ellipse, square and hexagon. There are four flow rates are considered in the study, 1kg/s, 0.5kg/s, 0.25kg/s and 0.01kg/s. Based on the study, copper 61.25% effective compare to aluminium and followed by steel and brass. In the overall, spring design performs better than S-Shape design and ellipse shape tube in leading. At the flow rate of 1kg/s, large size ellipse-spring tube design provide higher performance with rate of heat transfer 109192.02W. At flow rate of 0.5kg/s and 0.25kg/s medium size ellipse-spring tube design performs better than the others. While at the flow rate of 0.01kg/s, small size ellipse-S-Shape design is chosen. viii ABSTRAK Tujuan utama kajian ini adalah untuk merangka dan membuat simulasi bagi perubahan haba dalam tiub penyimpan solar. Simulasi tersebut dijanlankan megunakkan ANSYS 14.0 dengan megunakan dua reka bentuk iaitu spring dan tiub berbentuk-S. Empat bahan yang berbeza iaitu kuprum, aluminium, besi dan juga tembaga. Reka bentuk tersebut juga dikaji dengan tiga jenis saiz yang berbeza dan juga empat jenis reka bentuk yang berlainan iaitu bujur, elips, segi empat tepat dan juga segi enam. Empat jenis halaju yang dicuba bagi penyelidikan ini iaitu 1kg/s, 0.5kg/s, 0.25kg/s and 0.01kg/s. Mengikut kajian yang telah dibuat, kuprum menujukkan keputusan yang paling tinggi iaitu sabanyak 61.25% diikuti dengan aluminium, besi dan tembaga. Secara keseluruhanya, reka bentuk spring menjukkan keputusan yang lebih baik daripada reka bentuk S. Pada halaju 1 kg/s, saiz besar elips reka bentuk spring menjukkan keputusan yang baik dengan kadar pemindahan haba 109192.02W dan bagi halaju 0.5 kg/s dan 0.25 kg/s, tiub bersaiz medium menjukkan keputusan yang lebih baik. Manakal, pada halaju 0.01 kg/s, tiub berbentuk kecil menjukkan reka bentuk yang terbaik. ix TABLE OF CONTENTS Page EXAMINAR’S DECLARATION ii SUPERVISOR'S DECLARATION iii STUDENT'S DECLARATION iv DEDICATION v ACKNOWLEDGEMENTS vi ABSTRACT vii ABSTRAK viii TABLE OF CONTENTS ix LIST OF TABLES xii LIST OF FIGURES xiii LIST OF SYMBOLS xvi LIST OF ABBREVATIONS xvii CHAPTER 1 INTRODUCTION 1.1 Project Background 1 1.2 Problem Statement 2 1.3 The Objective Of The Study 2 1.4 Scopes Of Project 2 CHAPTER 2 LITERATURE REVIEW 2.1 Introduction 3 2.2 Solar Collectors 3 2.2.1 Flat Plate Collector (FPC) 4 2.2.2 Evacuated Tube Solar Collector 5 2.3 Heat Exchanger 6 2.3.1 Geometry Construction of Heat Exchanger 6 2.3.2 Flow Arrangement in Heat Exchanger 13 2.3.3 Heat Transfer Mechanism 15 2.3.4 Type of Heat Transfer Process 15 2.4 Type of Fluid Flow 16 x 2.5 Analysis of Tube Properties 19 2.6 Theoretical Analysis of Heat Transfer 22 2.7 Nanofluids 23 CHAPTER 3 METHODOLOGY 3.1 Introduction 26 3.2 Methodology of the Study 26 3.3 Cad Modelling Using SOLIDWORKS 28 3.3.1 Shell Design Modelling 28 3.3.2 Tube Design Modelling 29 3.4 Simulation Using ANSYS 35 3.4.1 Geometry 35 3.4.2 Meshing 36 3.4.3 FLUENT setup 37 3.5 Mathematical Calculation 41 CHAPTER 4 RESULTS AND DISCUSSION 4.1 Introduction 45 4.2 Analysis of vary material on heat transfer 46 4.3 Distribution of heat in spring tube 47 4.3.1 Analysis of spring design tube with varies velocity and size 48 4.4 Distribution of heat in S-Shape tube 55 4.4.1 Analysis of S-Shape tube with varies velocity and size 57 CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 5.1 Introduction 64 5.2 Conclusion 64 5.3 Recommendations 65 REFERENCES 67 xi APPENDICES 70 A Solidworks Designs 70 B Simulation 76 C Raw Data 81 D Gantt Chart for Final Year Project 1 & 2 89 xii LIST OF TABLES Table No. Title Page 2.1 Types of Shell-and-Tube Heat Exchangers 8 2.2 Type of flow in smooth tube 16 2.3 Thermal property of water & nanofluids at 343K 24 3.1 The dimension of the large tubes 34 3.2 The dimension of the medium size tubes 34 3.3 The dimension of the small size tubes 34 3.4 The properties of water 39 3.5 The properties of copper 39 3.6 The properties of aluminium 39 3.7 The properties of Brass 39 3.8 Dimension at flow rate of 1kg/s 42 3.9 Dimension at flow rate of 0.5kg/s 43 3.10 Dimension at flow rate of 0.25kg/s 43 3.11 Dimension at flow rate of 0.01kg/s 44 xiii LIST OF FIGURES Figure No. Title Page 2.1 a) Shell and tube heat exchanger with one shell and tube; 7 b) Shell and tube heat exchanger with one shell and two tubes. 2.2 Comparison of j/f for Turbo-C and EXTEK test sections 9 2.3 Spiral tube heat exchanger 10 2.4 Effectiveness vs. mass flow rate of hot water 11 2.5 Nusselt number as a function of Reynolds number for the 12 various pin 2.6 a) The fin efficiency varies with fin height and 13 b) Effects of fin space on heat transfer 2.7 Contour temperature for annular 17 2.8 Average heat transfer vs. mass flow rate of hot water 17 2.9 Variation of Reynolds number with temperature for three 18 nanofluids and basefluid 2.10 (a) Temperature difference between the inlet and outlet fluid 19 temperatures across the tube and (b) heat transfer rates obtained from the numerical analysis vs. Reynolds number. 2.11 Heat transfer coefficient for the circular and oval tube 20 2.12 Mixed mean temperature of air flow for: a) constant heat 21 flux and b) constant wall temperature 2.13 Convection heat transfer coefficient of nanofluids of a 25 heat exchanger 3.1 Methodology of the study 27 3.2 Steps on modelling CAD geometry in SOLIDWORKS 28 3.3 The shell of the heat exchanger with 1st and 3rd angle 29 of projection 3.4 The sketch of S-Shape tube in Solidworks 30 xiv Figure No. Title Page 3.5 The sketch of spring tube in Solidworks 30 3.6 The S-Shape tube on 1st and 3rd angle projection 31 3.7 The spring tube on 1st and 3rd angle projection 32 3.8 The various of tube shapes 33 3.9 Geometry setup in ANSYS Workbench 35 3.10 Defined geometry in workbench 36 3.11 a)Meshing setup, b) Meshed Geometry 37 4.1 The analysis on vary material with large spring design tube. 46 4.2(a, b, c, The temperature contour of spring tube at varies times. 48 d, e, f, g) 4.3 The analysis of larger size spring design tube with, a) Varies 49 flow rate and shapes; b) Reynolds number vs. temperature rise in water tank 4.4 The analysis of medium size spring design tube with, 50 a) Varies flow rate and shapes; b) Reynolds number vs. temperature risein water tank 4.5 The analysis of smaller size spring design tube with, 52 a) Varies flow rate and shapes; b) Reynolds number vs. temperature rise in water tank 4.6 Overall comparison of the spring design tube; with, 53 a) Varies flow rate and shapes; b) Reynolds number vs. temperature rise in water tank 4.7 Overall comparison of the spring design tube with 55 Rate of heat transfer, W vs. Flow rate, kg/s 4.8(a, b, c, The temperature contour for S-Shape tube at varies times. 56 d, and e) 4.9 The analysis of larger size section S-Shape tube with, 57 a) Varies flow rate and shapes; b) Reynolds number vs. temperature rise in water tank xv Figure No. Title Page 4.10 The analysis of medium size section S-Shape tube with, 59 a) Varies flow rate and shapes; b) Reynolds number vs. temperature rise in water tank 4.11 The analysis of smaller size section S-Shape tube with, 60 a) Varies flow rate and shapes; b) Reynolds number vs. temperature rise in water tank 4.12 The overall comparison of S-Shape tube; with, 62 a) Varies flow rate and shapes; b) Reynolds number vs. temperature rise in water tank `4.13 Overall comparison of the S-Shape design tube with 63 Rate of heat transfer, W vs. Flow rate, kg/s xvi LIST OF SYMBOLS °C Degree Celsius K Kelvin p Density Cp Specific Heat Re Reynolds number Nu Nusselt number A cs Cross section area ε Emissivity ° Degree % percentage Velocity Viscosity D Diameter l e Length-entrance m Mass flow rate T Temperature U Total heat transfer coefficient h Heat transfer coefficient k Thermal conductivity xvii LIST OF ABBREVATIONS FPC Flat Plate Collector ETSC The Evacuated tube solar collector CFD Computational Fluid Dynamics CAD Computer Aided Design 3D 3-Dimensional EXTEK Twisted multi head annulus tube CuO Copper (II) Oxide Al2O3 Aluminium Oxide SiO2 Silicon Dioxide Re Reynolds Number Nu Nusselt Number Tout Temperature out of cold fluid CHAPTER 1 INTRODUCTION 1.1 PROJECT BACKGROUND Heat exchanger is a device used to transfer heat from one medium to another.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages24 Page
-
File Size-