Stichting Laka: Documentatie- en onderzoekscentrum kernenergie De Laka-bibliotheek The Laka-library Dit is een pdf van één van de publicaties in This is a PDF from one of the publications de bibliotheek van Stichting Laka, het in from the library of the Laka Foundation; the Amsterdam gevestigde documentatie- en Amsterdam-based documentation and onderzoekscentrum kernenergie. research centre on nuclear energy. Laka heeft een bibliotheek met ongeveer The Laka library consists of about 8,000 8000 boeken (waarvan een gedeelte dus ook books (of which a part is available as PDF), als pdf), duizenden kranten- en tijdschriften- thousands of newspaper clippings, hundreds artikelen, honderden tijdschriftentitels, of magazines, posters, video's and other posters, video’s en ander beeldmateriaal. material. Laka digitaliseert (oude) tijdschriften en Laka digitizes books and magazines from the boeken uit de internationale antikernenergie- international movement against nuclear beweging. power. De catalogus van de Laka-bibliotheek staat The catalogue of the Laka-library can be op onze site. De collectie bevat een grote found at our website. The collection also verzameling gedigitaliseerde tijdschriften uit contains a large number of digitized de Nederlandse antikernenergie-beweging en magazines from the Dutch anti-nuclear power een verzameling video's. movement and a video-section. Laka speelt met oa. haar informatie- Laka plays with, amongst others things, its voorziening een belangrijke rol in de information services, an important role in the Nederlandse anti-kernenergiebeweging. Dutch anti-nuclear movement. Appreciate our work? Feel free to make a small donation. Thank you. www.laka.org | [email protected] | Ketelhuisplein 43, 1054 RD Amsterdam | 020-6168294 Woodhead Publishing is an imprint of Elsevier The Officers’ Mess Business Centre, Royston Road, Duxford, CB22 4QH, UK 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, USA The Boulevard, Langford Lane, Kidlington, OX5 1GB, UK Copyright © 2016 Elsevier Ltd. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (144) (0) 1865 843830; fax (144) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier website at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material. Notices No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made. British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress. ISBN: 978-0-08-100307-7 (print) ISBN: 978-0-08-100333-6 (online) For information on all Woodhead Publishing visit our website at https://www.elsevier.com/ Publisher: Joe Hayton Acquisition Editor: Alex White Editorial Project Manager: Alex White Production Project Manager: Omer Mukthar Designer: Mark Rogers Typeset by MPS Limited, Chennai, India Uranium for nuclear power: an introduction 1 Ian Hore-Lacy World Nuclear Association, London, United Kingdom 1.1 Introduction and history Compared with other mineral commodities, especially metals, whose utility has become evident by centuries of trial and error, the appreciation of uranium has developed from theories based in physics in the 1930s to exploit the unique energy density of uranium’s transformation in nuclear fission. Initially this was in the crucible of a world war, but always beyond military uses was the promise of the “uranium boiler” canvassed in the second British MAUD (Military Application of Uranium Detonation) report in July 1941—the work of “one of the most effective scientific committees that ever existed.” Less than eight years after atomic bombs demonstrated the immense potential of uranium, the first precursor of today’s power reactors and numerous naval reactors had started up in Idaho, and a year later, electricity was generated in Russia. The focus was now on safe, controlled, long-lasting, and economical machines to harness nuclear fission for reliable electricity supplies. The focus has remained there, with over 500 civil nuclear reactors notching up more than 16,000 reactor- years of operation to 2015 with remarkably few accidents—and even those acci- dents had far less adverse effects than feared. Today nuclear power has a unique position in relation to national energy policies as the only well-proven technology able to be deployed anywhere that can provide continuous reliable supply of electricity on a large scale and without nearly any CO2 emissions or air pollution. It is widely agreed that energy generally, and elec- tricity in particular, must increasingly be produced with much lower carbon dioxide emissions than hitherto. And as one-third of the world’s population aspires to enjoy the benefits of electricity that they have so far missed out on, the question of afford- ability looms larger than in the West, where it is by no means insignificant as a cost of living and an input to production, which must be competitive. Nuclear plants operate at low cost, and make electricity very affordable relative to any other low-carbon source. Reliability is a key attribute of nuclear generation, and nuclear plants typically operate at near full capacity 24 h per day and year-round with only a pause for refueling every 18À24 months. This operation is irrespective of weather or season. However, nuclear power is capital-intensive and this affects its ability to com- pete in liberalized electricity markets, particularly in competition with subsidized renewables and cheap gas, as elaborated next. Some long-term assurance of Uranium for Nuclear Power. DOI: http://dx.doi.org/10.1016/B978-0-08-100307-7.00001-6 © 2016 Elsevier Ltd. All rights reserved. 4 Uranium for Nuclear Power electricity sales at competitive prices with other sources apart from any subsidies on those is required (and without any subsidy beyond what is required to counter market distortions due to those sources). But the clear message from practically every international authority and their reports is that nuclear power is essential for meeting the world’s growing need for affordable, clean, and reliable electricity. There is no credible reason to not greatly increase its role in world electricity production, and for industrial heat including desalination. 1.2 Energy density, other characteristics The single most remarkable characteristic of uranium is its energy density: the amount of energy that a single kilogram can yield. Even so, exactly how much energy depends on the technology used to liberate it. One fuel pellet the size of a fingertip produces as much energy as one tonne of coal, even in the least efficient reactor. “Natural uranium” is that which is found in nature—mostly in the Earth’s crust in a variety of geological environments. In most nuclear reactors, only about half of 1% of this is actually used, but even so it yields about 500 GJ/kg, about 20,000 times as much as black coal. In a fast neutron reactor, about 60 times this is achiev- able, and one day potentially more if technology and economics were pressed. But, in fact, uranium is fairly common and not a high-priced commodity—it has been less than $100/kg in recent years—so there is little incentive as of yet to push those boundaries from a resource perspective. Like most other elements, uranium occurs as a mixture of isotopes, but with ura- nium, that fact is central to its use. Only one of the natural isotopes is directly usable, and that comprises only 0.7% of natural uranium. Hence, either power plants need to be designed accordingly, or the uranium needs to be enriched in that minor isotope, which is the subject of Chapters 11 and 12. In fact, the latter course of action accounts for 88% of the world’s nuclear power reactors (and all naval reactors). Also, like most metals, uranium occurs in a variety of chemical forms, though most is as a mixed oxide of UO2 and UO3, characteristically U3O8. Chapter 2 offers a deeper discussion. The concentration of uranium in its geological settings can range up to about 20% in some Canadian deposits, though 2%U is generally called a high-grade ore. Geological occurrences where it is defined as “ore” (economically recoverable) range down to about 0.01%U. 1.3 Resource situation Uranium is approximately as common in the Earth’s crust as tin and zinc, and occurs in most rocks. Granites typically have up to 5 ppm U (which incidentally and at higher levels provides the heat for geothermal energy). Seawater contains a vast amount at 0.003 ppm U, which is recoverable, but not economical. Uranium for nuclear power: an introduction 5 Our knowledge of what uranium (or anything else) is in the Earth’s crust arises from mineral exploration activities (see Chapter 3), which are expensive and mostly under- taken by mining companies that have negotiated the right to mine what they find and quantify. Therefore, any figures published based on this refer only to known resources. Beyond geological theorizing, we have little idea of what there is beyond this. The world’s known resources related to cumulative exploration expenditure are shown in figure. It can be seen how increased exploration leads to increased known resources.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages469 Page
-
File Size-