KO-DISSERTATION-2020.Pdf (3.093Mb)

KO-DISSERTATION-2020.Pdf (3.093Mb)

ABSTRACT Multi-pulse Nonlinear Optical Spectroscopy and Light-matter Interactions in Layered Materials Brian Alexander Ko, Ph.D. Mentor: Marlan O. Scully, Ph.D. The interaction between light and matter is one that underscores many applications from solar energy conversion to optical sensing of biological materials. The use of multiple pulses to study these interactions are especially useful in understanding the nonlinear optical properties of materials. Transition metal dichalcogenides such as molybdenum disulfide (MoS2) are attractive materials due to the existence of a direct excitonic resonance that can be used to enhance nonlinear optical phenomena, such as Raman spectroscopy. Here, we have investigated four-wave mixing (FWM) processes in bulk MoS2 using a multiplex coherent anti-Stokes Raman spectroscopy setup. The observed FWM signal has a resonance at approximately 680 nm, corresponding to the energy of the A excitonic transition of MoS2. This resonance can be attributed to the increased third-order nonlinear susceptibility near the excitonic transition. This phenomenon shows the potential of MoS2 as a substrate for enhancing FWM processes. Understanding how particles and light interact in a liquid environment is vital for optical and biological applications. The interaction between two femtosecond pulses and MoS2 nanoparticles suspended in liquid is studied. The laser pulses induce bubble formation on the surface of a nanoparticle and a nanoparticle aggregate then forms on the surface of the trapped bubble. Two-dimensional organometallic lead halide perovskites are generating great interest due to their optoelectronic characteristics, such as a direct band gap in the visible regime. However, the presence of defect states within the crystal structure can affect these properties, resulting in changes to their emission and the emergence of nonlinear optical phenomena. Here, we have investigated the effects of the presence of defect states on the nonlinear optical phenomena of the hybrid perovskite (BA)2(MA)2Pb3Br10. When two pulses are incident on a perovskite flake, FWM occurs, with peaks corresponding to the defect energy levels present within the crystal. The longer lifetime of the defect state, in comparison to that of virtual transitions, allows for a larger population of electrons to be excited by the second pump photon, resulting in increased FWM signal at the defect energies. This technique has the potential to detect defect energy levels in bulk crystals using FWM. Multi-pulse Nonlinear Optical Spectroscopy and Light-matter Interactions in Layered Materials by Brian Alexander Ko, B.S. A Dissertation Approved by the Department of Physics Dwight P. Russell, Ph.D., Interim Chairperson Submitted to the Graduate Faculty of Baylor University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved by the Dissertation Committee Marlan Scully, Ph.D., Chairperson Ho Wai Howard Lee, Ph.D. Zhenrong Zhang, Ph.D. Truell Hyde, Ph.D. Jonathan Hu, Ph.D. Accepted by the Graduate School December 2020 J. Larry Lyon, Ph.D., Dean Page bearing signatures is kept on file in the Graduate School. Copyright © 2020 by Brian Alexander Ko All rights reserved TABLE OF CONTENTS LIST OF FIGURES ......................................................................................................... vii LIST OF TABLES ............................................................................................................ ix ACKNOWLEDGMENTS .................................................................................................. x ATTRIBUTIONS ............................................................................................................ xii CHAPTER ONE ................................................................................................................. 1 Introduction ............................................................................................................. 1 Enhanced Four-wave Mixing Process Near the Excitonic Resonances of Bulk MoS2 ........................................................................................................... 2 Multi-pulse Laser-Induced Bubble Formation and Nanoparticle Aggregation Using MoS2 Nanoparticles .......................................................................... 4 Resonant Degenerate Four-wave Mixing at the Defect Energy Levels of 2D Organic-inorganic Hybrid Perovskite Crystals ................................. 9 CHAPTER TWO .............................................................................................................. 13 Degenerate Multiplex Coherent anti-Stokes Raman Spectroscopy Setup .............13 Derivation of Spontaneous Raman Cross-Section .....................................13 Selection Rules for Raman Transitions ......................................................15 Degenerate Multiplex Coherent Anti-Stokes Raman Spectroscopy Setup ........................................................................17 CHAPTER THREE .......................................................................................................... 21 Enhanced Four-wave Mixing Process Near the Excitonic Resonances of Bulk MoS2 ................................................................................................. 21 Abstract ................................................................................................................. 21 Introduction ........................................................................................................... 21 Methods................................................................................................................. 23 Results ................................................................................................................... 25 Degenerate Four-wave Mixing on Bulk MoS2 ......................................... 25 Discussion ............................................................................................................. 31 Degenerate Four-wave Mixing at the Excitonic Resonance ......................31 Thickness Dependence of Four-wave Mixing .......................................... 32 Calculation of the Third-order Nonlinear Susceptibility ...........................33 Acknowledgments................................................................................................. 35 CHAPTER FOUR ............................................................................................................. 36 Multi-pulse Laser-Induced Bubble Formation and Nanoparticle Aggregation Using MoS2 Nanoparticles ........................................................................ 36 Abstract ..................................................................................................... 36 v Introduction ............................................................................................... 36 Results ....................................................................................................... 39 Laser-Induced Cavitation and Nanoparticle Aggregation ............ 39 Laser-Induced Bubble Rotation and Convection ...........................42 Nanoparticle Aggregation ..............................................................44 Pulse Dependence .....................................................................................45 Discussion ..................................................................................................49 Pulse Dependence of Bubble Formation....................................... 49 Bubble Heating ............................................................................. 50 Comparison with Other Nanoparticles .......................................... 52 Methods..................................................................................................... 55 Acknowledgments..................................................................................... 57 CHAPTER FIVE .............................................................................................................. 58 Resonant Degenerate Four-wave Mixing at the Defect Energy Levels of 2D Organic-inorganic Hybrid Perovskite Crystals ............................... 58 Abstract ..................................................................................................... 58 Introduction ............................................................................................... 59 Methods..................................................................................................... 62 Results ....................................................................................................... 65 Discussion ................................................................................................. 70 Acknowledgments..................................................................................... 73 CHAPTER SIX ................................................................................................................ 74 Conclusion ........................................................................................................... 74 Enhanced Four-wave Mixing Process Near the Excitonic Resonances of Bulk MoS2 ........................................................... 74 Multi-pulse Laser-Induced Bubble Formation and Nanoparticle Aggregation Using MoS2 Nanoparticles ...................................... 74 Resonant Degenerate Four-wave Mixing at the Defect Energy Levels of 2D Organic-inorganic Hybrid Perovskite Crystals ...... 75 APPENDIX

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    111 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us