Fire Hose Nozzle

Fire Hose Nozzle

An Internet Book on Fluid Dynamics Example: Fire Hose Nozzle As a common and useful example consider the application of the linear momentun theorem to a simple nozzle as shown in Figure 1. For simplicity, it is assumed that the velocity magnitudes, q1 and q2,are uniform across the inlet area, A1, and the jet area, A2, respectively. The fluid is incompressible with density ρ and viscous losses within the nozzle are negligible as are the effects of gravity. Figure 1: A simple nozzle. It follows from the arbitrary duct analysis that the force that must be applied to the nozzle to hold it in place is ∗ F1 = m(−q1 + q2) − (p1 − pa)A1 +(p2 − pa)A2 (Bec1) in the direction of the flow. In this case the jet pressure, p2, is equal to the atmospheric pressure, pa,and the mass flow rate, m = ρq1A1 = ρq2A2, by continuity and so this expression can be written as ∗ 2 A1 F1 = ρA1q1 − 1 − (p1 − pa)A1 (Bec2) A2 Moreover, since the viscous losses in the nozzle are deemed negligible and gravity is to be neglected we can use Bernoulli’s to relate the pressure difference to the velocities: A2 p − p 1ρ q2 − q2 1ρq2 1 − 1 a = ( 2 1)= 1 2 1 (Bec3) 2 2 A2 and so the force that one must apply to the nozzle to hold it in place becomes 2 ∗ 1 2 A1 F1 = − ρA1q1 − 1 (Bec4) 2 A2 or, in terms of the pressure difference, (p1 − pa), ∗ (A1 − A2) F1 = −(p1 − pa)A1 (Bec5) (A1 + A2) In fact this is the force that the pipe upstream of the nozzle applies to the nozzle. The fact that this force is in the backward direction (opposite to the direction of flow) is somewhat counterintuitive since momentum is being added to the fluid as it passes through the nozzle. But we note that the total force ∗ being applied to the fluid in the nozzle is F1 plus (p1 − pa)A1 or ∗ 2A2 F1 = F1 +(p1 − pa)A1 =(p1 − pa)A1 (Bec6) (A1 + A2) which is in the forward direction. A fireman holding a nozzle with a flexible hose must indeed apply this forward force while holding the nozzle in order to prevent it flying backwards. This is seen more clearly in the next example of a fire hose with an upstream bend..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us