Magnetism, Free Electrons and Interactions

Magnetism, Free Electrons and Interactions

<p></p><ul style="display: flex;"><li style="flex:1"><strong>Magnetism </strong></li><li style="flex:1"><strong>Magnets </strong></li></ul><p></p><p>Zero external field <br>Finite external field </p><p>• Types&nbsp;of magnetic systems • Pauli&nbsp;paramagnetism in metals • Landau diamagnetism&nbsp;in metals • Larmor&nbsp;diamagnetism in insulators • Ferromagnetism&nbsp;of electron gas • Spin&nbsp;Hamiltonian </p><p>Paramagnets Diamagnets Ferromagnets </p><p>• Mean&nbsp;field approach • Curie&nbsp;transition </p><p>Antiferromagnets Ferrimagnets </p><ul style="display: flex;"><li style="flex:1">…</li><li style="flex:1">…</li><li style="flex:1">…</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Pauli paramagnetism </strong></li><li style="flex:1"><strong>Pauli paramagnetism </strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ε<sub style="top: 0.235em;">↑ </sub>= <em>p</em><sup style="top: -0.315em;">2 </sup>/ 2<em>m</em>−<em>e</em>=<em>B</em>/ 2<em>mc </em></li><li style="flex:1">ε = <em>p</em><sup style="top: -0.315em;">2 </sup>/ 2<em>m</em>+<em>e</em>=<em>B</em>/ 2<em>mc </em></li></ul><p></p><p>Let us first look at magnetic properties of a free electron gas. </p><p><sup style="top: -0.405em;">↓</sup>G </p><p><em>d</em><sup style="top: -0.3em;">3 </sup><em>p </em></p><p>Electron are spin-1/2 particles <br>#of majority spins: </p><p></p><ul style="display: flex;"><li style="flex:1"><em>N</em><sub style="top: 0.2201em;">↑,↓ </sub>=<em>V </em></li><li style="flex:1"><sub style="top: 0.2201em;">3 </sub><em>f </em>(ε<sub style="top: 0.2201em;">↑,↓ </sub></li></ul><p></p><p>)</p><p>∫</p><p>In external magnetic field <strong>B </strong>– Zeeman splitting <br>#of minority spins: </p><p>(2π=) </p><p></p><ul style="display: flex;"><li style="flex:1">ε<sub style="top: 0.23em;">↑ </sub>= <em>p</em><sup style="top: -0.315em;">2 </sup>/ 2<em>m</em>−<em>e</em>=<em>B</em>/ 2<em>mc </em></li><li style="flex:1">ε<sub style="top: 0.23em;">↓ </sub>= <em>p</em><sup style="top: -0.315em;">2 </sup>/ 2<em>m</em>+<em>e</em>=<em>B</em>/ 2<em>mc </em></li></ul><p></p><p>Magnetization (magnetic moment per unit volume): <br>- minority spins <br>Fermi level </p><p><em>e</em>= </p><ul style="display: flex;"><li style="flex:1"><em>M </em>= </li><li style="flex:1">(<em>N</em><sub style="top: 0.22em;">↑ </sub>− <em>N</em><sub style="top: 0.22em;">↓ </sub>) </li></ul><p></p><p>: aligned along the field and proportional </p><p>2<em>Vmc </em></p><p>to <em>B </em>in low fields <br>- magnetic succeptibility </p><p>χ</p><p><em>M </em>= χ<em>B </em></p><p>- majority spins <br>- paramagnetism </p><p>χ &gt; 0 </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Pauli succeptibility </strong></li><li style="flex:1"><strong>Landau quantization </strong></li></ul><p></p><p>G</p><p></p><ul style="display: flex;"><li style="flex:1">ε<sub style="top: 0.235em;">↑ </sub>= <em>p</em><sup style="top: -0.315em;">2 </sup>/ 2<em>m</em>−<em>e</em>=<em>B</em>/ 2<em>mc </em></li><li style="flex:1">ε<sub style="top: 0.235em;">↓ </sub>= <em>p</em><sup style="top: -0.315em;">2 </sup>/ 2<em>m</em>+<em>e</em>=<em>B</em>/ 2<em>mc </em></li></ul><p></p><p>A free electron in magnetic field: </p><p>ˆ</p><p><em>B </em>&amp; <em>z </em></p><p>G</p><p>2<br>2</p><p>µ+<em>e</em>=<em>B</em>/2<em>mc </em></p><p>G</p><p>⎛⎜⎝<br>⎞⎟⎠</p><p>=</p><p><em>ieA </em></p><p><em>A</em><sub style="top: 0.17em;"><em>y </em></sub>= <em>Bx</em>; <em>A </em>= <em>A </em>= 0 </p><p></p><ul style="display: flex;"><li style="flex:1"><em>V</em></li><li style="flex:1"><em>g e</em>=<em>B </em></li></ul><p></p><p>Schrödinger equation: </p><p></p><ul style="display: flex;"><li style="flex:1"><em>x</em></li><li style="flex:1"><em>z</em></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">∇+ </li><li style="flex:1">ψ = εψ </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>N</em><sub style="top: 0.22em;">↑ </sub>− <em>N</em><sub style="top: 0.22em;">↓ </sub>= </li><li style="flex:1"><em>g</em>(ε)<em>d</em>ε ≈ </li></ul><p><em>V</em></p><p>∫</p><p></p><ul style="display: flex;"><li style="flex:1">2<em>m </em></li><li style="flex:1">=<em>c </em></li></ul><p></p><p>2 <sub style="top: 0.195em;">µ−<em>e</em>=<em>B</em>/2<em>mc </em></sub></p><p>2 <em>mc </em></p><p><em>n</em>,<em>k</em><sub style="top: 0.17em;"><em>z </em></sub></p><p><em>B=1</em>T corresponds to <em>e</em>=<em>B </em>/ <em>mc </em>=1<em>K </em>×<em>k</em><sub style="top: 0.17em;"><em>B </em></sub>provided <em>m </em>is free electrons’s mass </p><p>Solutions: labeled by two indices </p><p>G</p><p>ψ</p><p><sub style="top: 0.175em;"><em>nk </em></sub>(<em>r</em>) = exp(<em>ik</em><sub style="top: 0.175em;"><em>y </em></sub><em>y </em>+<em>ik</em><sub style="top: 0.175em;"><em>z </em></sub><em>z</em>)ϕ<sub style="top: 0.175em;"><em>n </em></sub>(<em>x </em>− =<em>ck</em><sub style="top: 0.175em;"><em>y </em></sub>/ <em>eB</em>) </p><p>For any fields, </p><p><em>e</em>=<em>B</em>/ <em>mc </em>ꢀ µ </p><p>ϕ<sub style="top: 0.17em;"><em>n </em></sub></p><p>- wave functions of a harmonic oscillator <br>Magnetic succeptibility: </p><p><sup style="top: 0em;">Energies: </sup>ε<sub style="top: 0.175em;"><em>nk </em></sub>= =<sup style="top: -0.295em;">2</sup><em>k</em><sub style="top: 0.175em;"><em>z</em></sub><sup style="top: -0.295em;">2 </sup>/ 2<em>m</em>+(<em>e</em>=<em>B</em>/ <em>mc</em>)(<em>n</em>+1/ 2) </p><p>2</p><p>- strongly degenerate!! </p><p><em>e</em>= </p><p></p><ul style="display: flex;"><li style="flex:1">⎛</li><li style="flex:1">⎞</li></ul><p></p><p>χ<sub style="top: 0.17em;"><em>P </em></sub></p><p>=</p><p><em>g</em></p><p>⎜⎝<br>⎟⎠</p><p>2<em>mc </em></p><p>We “quantized” momenta transverse to the field <br>(Landau levels) </p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Landau diamagnetism </strong></li><li style="flex:1"><strong>Electrons in metals </strong></li></ul><p></p><p>A free electron in magnetic field: moves along spiral trajectories and create magnetic field themselves. <br>We know that there are diamagnetic metals. How can we explain their existence? <br>This magnetic field is directed antiparallel to the external one <br>Different spectra of electrons in metals and free electrons. </p><p><em>m</em><sup style="top: -0.3em;">* </sup></p><p>Example: renormalized electron mass <br>Diamagnetism <br>This only affects orbital motion, not Zeeman splitting </p><p><em>dk </em></p><p>Energy: </p><p><em>E </em>= 2 </p><p>ε<sub style="top: 0.17em;"><em>nk </em></sub><em>f </em>ε </p><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li></ul><p></p><p>∑</p><p></p><ul style="display: flex;"><li style="flex:1"><em>s</em></li><li style="flex:1"><em>nk </em></li></ul><p></p><p>∫</p><p>2π </p><p>= −<em>V </em><sup style="top: -0.3em;">−1 </sup></p><p><em>n</em></p><p>χ<sub style="top: 0.17em;"><em>P</em></sub><sup style="top: -0.295em;">* </sup>= χ<sub style="top: 0.17em;"><em>P</em></sub>; χ<sub style="top: 0.17em;"><em>L</em></sub><sup style="top: -0.295em;">* </sup>= χ<sub style="top: 0.17em;"><em>L </em></sub>(<em>m</em>/ <em>m</em><sup style="top: -0.295em;">*</sup>)<sup style="top: -0.295em;">2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1"><em>M</em></li><li style="flex:1">∂<em>E </em>/ </li></ul><p></p><p>∂</p><p><em>B</em></p><p>Magnetization: </p><p>2</p><p>13</p><p><em>e</em>= </p><p>1</p><p>⎛⎝<br>⎞</p><p></p><ul style="display: flex;"><li style="flex:1">Result for the succeptibility: </li><li style="flex:1">We can explain paramagnetic and diamagnetic metals! </li></ul><p></p><p>χ<sub style="top: 0.17em;"><em>L </em></sub>= − </p><p><em>g </em>= −&nbsp;χ<sub style="top: 0.17em;"><em>P </em></sub></p><p></p><ul style="display: flex;"><li style="flex:1">⎜</li><li style="flex:1">⎟</li></ul><p>⎠</p><p>2<em>mc </em></p><p>3</p><p>But there is no way we can explain ferromagnetic and antiferromagnetic metals in non-interacting electron model. <br>Total succeptibility: </p><p>χ</p><p>=</p><p>χ<sub style="top: 0.17em;"><em>P </em></sub></p><p>+</p><p>χ<sub style="top: 0.17em;"><em>L </em></sub></p><p>=</p><p>2χ<sub style="top: 0.17em;"><em>P </em></sub>/3 </p><p>&gt;</p><p>0</p><p>: paramagnetic! <br>Try insulators? </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Larmor diamagnetism </strong></li><li style="flex:1"><strong>Larmor diamagnetism </strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>e</em><sup style="top: -0.295em;">2 </sup></li><li style="flex:1"><em>e</em><sup style="top: -0.295em;">2</sup><em>ZN </em></li></ul><p></p><p>Consider an ionic insulator with filled shells. Electrons are localized at the ions. </p><p>∆<em>E</em><sub style="top: 0.17em;"><em>g </em></sub>= </p><p></p><ul style="display: flex;"><li style="flex:1"><em>B</em><sup style="top: -0.3em;">2 </sup></li><li style="flex:1"><em>r</em><sup style="top: -0.3em;">2 </sup></li></ul><p></p><p>=</p><p><em>B</em><sup style="top: -0.3em;">2 </sup><em>r</em><sup style="top: -0.3em;">2 </sup></p><p>G</p><p>2</p><p>∑</p><p><em>i</em></p><p>Electron Hamiltonian: </p><p></p><ul style="display: flex;"><li style="flex:1">12<em>mc</em><sup style="top: -0.295em;">2 </sup></li><li style="flex:1">12<em>mc</em><sup style="top: -0.295em;">2 </sup></li></ul><p></p><p>2</p><p><em>g</em></p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G G&nbsp;G </li><li style="flex:1">G</li></ul><p></p><p>⎛⎜⎝<br>⎞⎟⎠</p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1"><em>ieA </em></li><li style="flex:1"><em>e</em></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">G</li></ul><p></p><p><em>i g</em></p><p>ˆ</p><p><em>H</em></p><p></p><ul style="display: flex;"><li style="flex:1">= − </li><li style="flex:1">∇+ </li><li style="flex:1">+</li></ul><p></p><p><em>BS</em>; <em>A </em></p><p>=</p><p><em>B</em></p><p>×</p><p><em>r</em><br>2<em>m </em></p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1"><em>c</em></li><li style="flex:1"><em>mc </em></li></ul><p></p><p>1 ∂<sup style="top: -0.295em;">2</sup><em>E e</em><sup style="top: -0.295em;">2</sup><em>Z </em></p><p>Succeptibility: </p><p><em>c</em><sub style="top: 0.17em;"><em>A </em></sub><em>r</em><sup style="top: -0.3em;">2 </sup></p><p>- ionic charge </p><p><em>Z</em></p><p><strong>r </strong>small: consider terms with the field as a perturbation. </p><p></p><ul style="display: flex;"><li style="flex:1">χ = − </li><li style="flex:1">= − </li></ul><p></p><p><em>V </em>∂<em>B</em><sup style="top: -0.295em;">2 </sup><br>6<em>mc</em><sup style="top: -0.295em;">2 </sup></p><p><em>g</em></p><p><em>c</em><sub style="top: 0.175em;"><em>A</em></sub><sub style="top: 0.03em;">- #of atoms per unit volume </sub></p><p>Correction to the energy in the ground state: </p><p>ˆ</p><p>∆<em>E</em><sub style="top: 0.17em;"><em>g </em></sub>= <em>g</em>.<em>s H g</em>.<em>s </em></p><p>Diamagnetism! <br>Total spin and total momentum of electrons in a filled shell are zero; </p><p><em>r</em><sup style="top: -0.3em;">2 </sup></p><p>If the ionic shells are not filled – can get paramagnetic contribution due to other terms. </p><ul style="display: flex;"><li style="flex:1">only the term with </li><li style="flex:1">contributes. </li></ul><p></p><p><em>e</em><sup style="top: -0.295em;">2 </sup><br>8<em>mc</em><sup style="top: -0.295em;">2 </sup><em>e</em><sup style="top: -0.295em;">2 </sup><br>12<em>mc</em><sup style="top: -0.295em;">2 </sup></p><p>∆<em>E</em><sub style="top: 0.17em;"><em>g </em></sub>= </p><p><em>B</em><sup style="top: -0.3em;">2 </sup><em>x</em><sup style="top: -0.3em;">2 </sup>+ <em>y</em><sup style="top: -0.3em;">2 </sup></p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1"><em>B</em><sup style="top: -0.3em;">2 </sup></li><li style="flex:1"><em>r</em><sup style="top: -0.3em;">2 </sup></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li></ul><p></p><p>Can explain paramagnetic and diamagnetic insulators, but not ferromagnetic and antiferromagnetic ones! </p><p></p><ul style="display: flex;"><li style="flex:1">∑</li><li style="flex:1">∑</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>i</em></li><li style="flex:1"><em>i</em></li><li style="flex:1"><em>i</em></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><em>i</em></li><li style="flex:1"><em>i</em></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><em>g</em></li><li style="flex:1"><em>g</em></li></ul><p></p><p><strong>Ferromagnetism for localized electrons </strong></p><p><strong>Exchange interaction </strong></p><p>Try to&nbsp;visualize for localized electrons (atoms; artificial atoms – quantum dots; defects etc) <br>Two electrons: antisymmetric wave function! Take an electron level </p><p>ε</p><p>The simplest model: <br>Wave function of two electrons: </p><p>δ</p><p>Discrete electron states; spacing (each level is doubly degenerate) </p><p>δ</p><p>1</p><p><em>S </em>= 0,1 </p><p>for </p><p></p><ul style="display: flex;"><li style="flex:1">ψ (<em>r </em>,<em>r </em>) = </li><li style="flex:1">ϕ (<em>r </em>)ϕ (<em>r </em>) ±ϕ (<em>r </em>)ϕ (<em>r </em>) </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">[</li><li style="flex:1">]</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>2</p><p>To put an electron into the system costs electrostatic energy <em>U </em>and exchange </p><p>energy <em>-J </em></p><p>Energy splitting due to interaction: spin-dependent! </p><p><sup style="top: -0.16em;">Same spin: </sup><em>U </em>+δ − <em>J </em></p><p>ε →ε +<em>C </em>± <em>J </em>/ 2 </p><p>Energy to pay: </p><p><sup style="top: -0.14em;">Opposite spin: </sup><em>U </em></p><p><em>C </em>= <em>d r d r U</em>(<em>r </em>− <em>r </em>) ϕ<sub style="top: 0.18em;">1</sub>(<em>r </em>) <sup style="top: -0.42em;">2 </sup>ϕ<sub style="top: 0.18em;">2 </sub>(<em>r </em>) <sup style="top: -0.42em;">2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>∫</p><p><em>J </em>&lt;δ <sup style="top: -0.01em;">Non-magnetic state </sup></p><p><em>J </em>&gt;δ Ferromagnetic state </p><p><em>J </em>= 2 <em>d r d r U</em>(<em>r </em>− <em>r </em>)ϕ<sub style="top: 0.18em;">1</sub>(<em>r </em>)ϕ<sub style="top: 0.18em;">1</sub><sup style="top: -0.31em;">*</sup>(<em>r </em>)ϕ<sub style="top: 0.18em;">2</sub><sup style="top: -0.31em;">*</sup>(<em>r </em>)ϕ<sub style="top: 0.18em;">2 </sub>(<em>r </em>) </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>∫</p><p>G G </p><p>ˆ</p><p>Spin Hamiltonian </p><p><em>H </em>= <em>const </em>− <em>JS</em><sub style="top: 0.18em;">1</sub><em>S</em><sub style="top: 0.18em;">2 </sub></p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Itinerant ferromagnetism </strong></li><li style="flex:1"><strong>Itinerant ferromagnetism </strong></li></ul><p></p><p>If we can not get ferromagnetism with free electrons, try interacting electrons. <br>Working the interaction terms out for free electrons (see <em>Advanced </em></p><p><em>Quantum Mechanics, lecture 4</em>) </p><p>35</p><p>3<em>N </em></p><p>=</p><p><sup style="top: -0.315em;">2</sup><em>k</em><sub style="top: 0.18em;"><em>F</em></sub><sup style="top: -0.315em;">2 </sup>2<em>m </em></p><p></p><ul style="display: flex;"><li style="flex:1">Hartree-Fock approximation: </li><li style="flex:1">Kinetic energy: </li></ul><p></p><p><em>E</em><sub style="top: 0.18em;"><em>kin </em></sub></p><p>=</p><p><em>NE</em><sub style="top: 0.18em;"><em>F </em></sub></p><p>=</p><p>5</p><p><em>E</em><sub style="top: 0.17em;">int </sub>= <em>g V g</em></p><p>int </p><p>3</p><p><em>k</em><sub style="top: 0.17em;"><em>F </em></sub></p><p>G G&nbsp;<em>e</em><sup style="top: -0.295em;">2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li><li style="flex:1">G</li><li style="flex:1">G</li><li style="flex:1">G</li><li style="flex:1">G</li></ul><p></p><p>Potential energy: </p><p><sup style="top: -0.005em;">NB: </sup><em>N </em>=<em>Vk</em><sub style="top: 0.18em;"><em>F</em></sub><sup style="top: -0.31em;">3 </sup>/(3π <sup style="top: -0.31em;">2 </sup>) </p><p><em>E</em><sub style="top: 0.17em;">int </sub>= −&nbsp;<em>Ne</em><sup style="top: -0.295em;">2 </sup></p><p>2</p><p>12</p><p>≈</p><p><em>drdr </em>' </p><p>ψ<sub style="top: 0.17em;"><em>i </em></sub>(<em>r</em>) <sup style="top: -0.4em;">2 </sup>ψ <sub style="top: 0.17em;"><em>j </em></sub>(<em>r </em>') −ψ<sub style="top: 0.17em;"><em>i </em></sub>(<em>r</em>)ψ <sub style="top: 0.17em;"><em>j </em></sub>(<em>r </em>')ψ<sub style="top: 0.17em;"><em>i </em></sub>(<em>r </em>')ψ <sub style="top: 0.17em;"><em>j </em></sub>(<em>r</em>) </p><p></p><ul style="display: flex;"><li style="flex:1">*</li><li style="flex:1">*</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li></ul><p></p><p>4</p><p>π</p><p>∑<br>∫</p><p></p><ul style="display: flex;"><li style="flex:1">⎢</li><li style="flex:1">⎥</li></ul><p></p><ul style="display: flex;"><li style="flex:1">⎦</li><li style="flex:1">⎣</li></ul><p></p><p><em>r </em>−<em>r </em>' </p><p><em>ij </em></p><p><sup style="top: -0.16em;">Try now a spin-polarized ground state: </sup><em>k</em><sub style="top: 0.17em;"><em>F</em></sub><sup style="top: -0.3em;">↑ </sup>≠ <em>k</em><sub style="top: 0.17em;"><em>F</em></sub><sup style="top: -0.3em;">↓ </sup></p><p>Kinetic energy loss can be compensated by the potential energy gain! <br>Fock (exchange) <br>Hartree (direct) </p><p>interaction interaction. Only exists if spin projections are the same </p><p>in the states <em>i </em>and <em>j </em></p><p></p><ul style="display: flex;"><li style="flex:1">5</li><li style="flex:1">1</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">For </li><li style="flex:1">- spin-polarized ground state (ferromagnetism!!) </li></ul><p></p><p><em>k</em><sub style="top: 0.17em;"><em>F </em></sub><em>a</em><sub style="top: 0.17em;"><em>B </em></sub>&lt; </p><p>2π 2<sup style="top: -0.295em;">1/3 </sup>+1 </p><p><em>a</em><sub style="top: 0.17em;"><em>B </em></sub>= =<sup style="top: -0.295em;">2 </sup>/ <em>me</em><sup style="top: -0.295em;">2 </sup></p><p>Never occurs in real life. <br>- Bohr radius </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Antiferromagnetic ordering </strong></li><li style="flex:1"><strong>Antiferromagnetic ordering </strong></li></ul><p></p><p>2</p><p>A different situation: a pair of magnetic atoms in an insulating matrix Consider d-electrons, 5 electrons per atom <br>2<sup style="top: -0.135em;">nd </sup>order corrections to the ground state: virtual states </p><p><em>M</em><sub style="top: 0.185em;"><em>i</em>ν </sub><br>∆<em>E </em>= − </p><p>∑</p><p><em>E </em>− <em>E</em><sub style="top: 0.185em;"><em>i </em></sub></p><p>νν</p><p></p><ul style="display: flex;"><li style="flex:1">Virtual </li><li style="flex:1">Ground </li></ul><p><em>U </em>– ionization energy; <em>t </em>– overlap between the atoms </p><p><em>t</em></p><p>ꢀ</p><p><em>U</em></p><p>∆<em>E </em>= −25<em>t</em><sup style="top: -0.31em;">2 </sup>/<em>U </em>ꢀ <em>t</em>,<em>U </em></p><p>Unperturbed ground state: either parallel or antiparallel spins. <br>Ferromagnetic state: no second-order correction (forbidden by Pauli principle) </p><p>Antiferromagnetic state preferential! </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Spin Hamiltonian </strong></li><li style="flex:1"><strong>Mean field approach </strong></li></ul><p></p><p>Let us single out one particular spin at <em>i</em>. <br>Does not work for many atoms – but still represents a good model to treat </p><p>G</p><p><em>i</em></p><p>G</p><p>ˆ</p><p>magnetism </p><p>ˆ<br>ˆ</p><p><em>H </em>= −<em>JS S &nbsp;</em>+(all other spins) </p><p>G G </p><p><em>i</em></p><p>∑</p><p><em>j</em></p><p>ˆ ˆ <br>ˆ</p><p><em>H </em>= −&nbsp;<em>J S &nbsp; S </em></p><p><em>i </em>and <em>j </em>– lattice sites </p><p><em>j</em></p><p>∑</p><p></p><ul style="display: flex;"><li style="flex:1"><em>ij </em></li><li style="flex:1"><em>j</em></li></ul><p><em>ij </em></p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li></ul><p></p><p>ˆ</p><p>GG </p><p>Approximation: this spin sees the average field (Weiss field) </p><p>ˆ<br>ˆ</p><p><em>h </em>= −<em>J </em><br><em>S</em></p><p>Common approximation: only nearest neighbours interact; the same exchange integrals for all bonds </p><p>∑</p><p><em>H </em>= <em>hS</em><sub style="top: 0.18em;"><em>i </em></sub></p><p><em>j j</em></p><p>G G </p><p><em>i</em></p><p>Now we need to calculate the average field self-consistently. </p><p>ˆ ˆ <br>ˆ</p><p>Heisenberg model: </p><p><em>H </em>= −<em>J S &nbsp; S </em></p><p>∑</p><p><em>j</em></p><p>Each site has </p><p><em>N</em></p><p>nearest neighbours. For each neighbour, </p><p><em>ij </em></p><p><em>P </em>∝ exp(−<em>h</em>/ 2<em>k</em><sub style="top: 0.18em;"><em>B</em></sub><em>T</em>) </p><p>↓</p><p>chance to be “up” (parallel to the field) </p><p><em>P</em><sup style="top: -0.49em;">↑ </sup>∝ exp(+<em>h</em>/ 2<em>k</em><sub style="top: 0.18em;"><em>B</em></sub><em>T</em>) </p><p><em>J </em>&gt; 0 (<em>J </em>&lt; 0) </p><p>favors ferromagnetism (antiferromagnetism) chance to be “down” (antiparallel to the field) <br>Exact solution: only known for 1D chain (Bethe 1931) – no magnetism! </p><p></p><ul style="display: flex;"><li style="flex:1"><em>JN </em></li><li style="flex:1"><em>JN </em></li><li style="flex:1"><em>h</em></li></ul><p></p><p>Can also be treated for high spins (classical) Let us see what we can do with approximate solutions. <br>Equation for the field: </p><p></p><ul style="display: flex;"><li style="flex:1"><em>h </em>= − </li><li style="flex:1"><em>P </em>− <em>P </em></li></ul><p></p><p>=</p><p>tanh </p><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">↑</li><li style="flex:1">↓</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>2<em>k</em><sub style="top: 0.18em;"><em>B</em></sub><em>T </em></p><p>3</p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Mean field approach </strong></li><li style="flex:1"><strong>Curie transition </strong></li></ul><p></p><p>Magnetization close to transition temperature </p><p><em>JN </em></p><p></p><ul style="display: flex;"><li style="flex:1"><em>JN </em></li><li style="flex:1"><em>h</em></li></ul><p></p><p><em>T </em>= </p><p><em>h </em>= </p><p>tanh </p><p><em>c</em></p><p>tanh <em>x </em>≈ <em>x </em>− <em>x</em><sup style="top: -0.315em;">3 </sup>/3 </p><p>4<em>k</em><sub style="top: 0.18em;"><em>B </em></sub></p><p>2</p><p>2<em>k</em><sub style="top: 0.18em;"><em>B</em></sub><em>T </em></p><p>Solution: </p><p><em>h </em>= 12<em>k</em><sub style="top: 0.185em;"><em>B</em></sub><sup style="top: -0.31em;">2</sup><em>T </em>(<em>T </em>−<em>T</em>) </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us