Polynomials Notes (Answers)

Polynomials Notes (Answers)

Pure Math 10 Notes Unit 1: Polynomials Unit 1: Polynomials 3-1: Reviewing Polynomials Expressions: - mathematical sentences with no equal sign. Example: 3x + 2 Equations: - mathematical sentences that are equated with an equal sign. Example: 3x + 2 = 5x + 8 Terms: - are separated by an addition or subtraction sign. - each term begins with the sign preceding the variable or coefficient. Numerical Coefficient Monomial: - one term expression. Example: 5x2 Exponent Variable Binomial: - two terms expression. Example: 5x2 + 5x Trinomial: - three terms expression. Example: x2 + 5x + 6 Polynomial: - many terms (more than one) expression. All Polynomials must have whole numbers as exponents!! 1 Example: 9x −1 +12x 2 is NOT a polynomial. Degree: - the term of a polynomial that contains the largest sum of exponents Example: 9x2y3 + 4x5y2 + 3x4 Degree 7 (5 + 2 = 7) Example 1: Fill in the table below. Polynomial Number of Terms Classification Degree Classified by Degree 9 1 monomial 0 constant 4x 1 monomial 1 linear 9x + 2 2 binomial 1 linear x2 − 4x + 2 3 trinomial 2 quadratic 2x3 − 4x2 + x + 9 4 polynomial 3 cubic 4x4 − 9x + 2 3 trinomial 4 quartic Like Terms: - terms that have the same variables and exponents. Examples: 2x2y and 5x2y are like terms 2x2y and 5xy2 are NOT like terms Copyrighted by Gabriel Tang, B.Ed., B.Sc. Page 1. Unit 1: Polynomials Pure Math 10 Notes To Add and Subtract Polynomials: Combine like terms by adding or subtracting their numerical coefficients. Example 2: Simplify the followings. a. 3x2 + 5x − x2 + 4x − 6 b. (9x2y3 + 4x3y2) + (3x3y2 −10x2y3) = 3x2 + 5x − x2 + 4x − 6 = 9x2y3 + 4x3y2 + 3x3y2 −10x2y3 = 2x2 + 9x − 6 = −x2y3 + 7x3y2 c. (9x2y3 + 4x3y2) − (3x3y2 −10x2y3) = 9x2y3 + 4x3y2 − 3x3y2 + 10x2y3 (drop brackets and switch signs in the bracket that had − sign in front of it) = 19x2y3 + x3y2 9x 2 + 4x d. Subtract This is the same as (9x2 + 4x) − (5x2 −7x) 5x 2 − 7x = 9x2 + 4x − 5x2 + 7x = 4x2 + 11x To Multiply and Divide Monomials: Multiply or Divide (Reduce) Numerical Coefficients. Add or Subtract exponents of the same variable according to basic exponential laws. Example 3: Simplify the followings. 24x7 y 4 z 5 75a3b4 a. (3x3y2) (7x2y4) b. c. 6x3 yz 5 25a5b3 24 x7 y 4 z 5 75 a3 b4 = (3)(7) (x3)(x2) (y2)(y4) = = 3 5 5 3 6 x y z 25 a b 3b = 21x5y6 = 4x4y3z0 ( z0 = 1 ) = 3a−2b or a 2 = 4x4y3 Page 2. Copyrighted by Gabriel Tang, B.Ed., B.Sc. Pure Math 10 Notes Unit 1: Polynomials (AP) Example 4: Find the area of the following ring. General Formula for Area of a Circle A = πr2 Inner Circle Radius = 2x Outer Circle Radius = (2x + 4x) = 6x Inner Circle Area: A = π (2x)2 A = π (4x2) 4x 4x A = 4πx2 Outer Circle Area: A = π (6x)2 A = π (36x2) A = 36πx2 Shaded Area = 36πx2 − 4πx2 Shaded Area = 32πx2 3-1 Homework Assignment Regular: pg. 102-103 #1 to 51, 55, 56 AP: pg. 102-103 #1 to 51, 53-57 Copyrighted by Gabriel Tang, B.Ed., B.Sc. Page 3. Unit 1: Polynomials Pure Math 10 Notes 3-3: Multiplying Polynomials To Multiply Monomials with Polynomials Example 1: Simplify the followings. a. 3 (2x2 − 4x + 7) b. 2x (3x2 + 2x − 4) = 3 (2x2 − 4x + 7) = 2x (3x2 + 2x − 4) = 6x2 − 12x + 21 = 6x3 + 4x2 − 8x c. 3x (5x + 4) − 4 (x2 − 3x) d. 8 (a2 − 2a + 3) − 4 − (3a2 + 7) (only multiply = 3x (5x + 4) − 4 (x2 − 3x) the brackets = 8 (a2 − 2a + 3) − 4 − (3a2 + 7) right after the = 15x2 + 12x − 4x2 + 12x monomial) = 8a2 − 16a + 24 − 4 − 3a2 − 7 = 11x2 + 24x = 5a2 − 16a + 13 To Multiply Polynomials with Polynomials Example 2: Simplify the followings. a. (3x + 2) (4x −3) b. (x + 3) (2x2 − 5x + 3) = (3x + 2) (4x −3) = (x + 3) (2x2 − 5x + 3) = 12x2 − 9x + 8x − 6 = 2x3 − 5x2 + 3x + 6x2 − 15x + 9 = 12x2 − x − 6 = 2x3 + x2 − 12x + 9 c. 3 (x + 2) (2x + 3) − (2x − 1) (x + 3) d. (x2 − 2x + 1) (3x2 + x − 4) = 3 (x + 2) (2x + 3) − (2x − 1) (x + 3) = (x2 − 2x + 1) (3x2 + x − 4) = 3 (2x2 − 3x + 4x − 6) − (2x2 + 6x − x − 3) = 3x4 + x3 − 4x2 −6x3 − 2x2 + 8x + 3x2 + x − 4 = 3 (2x2 + x − 6) − (2x2 + 5x − 3) = 6x2 + 3x − 18 − 2x2 − 5x + 3 = 3x4 − 5x3 − 3x2 + 9x − 4 = 4x2 − 2x − 15 Page 4. Copyrighted by Gabriel Tang, B.Ed., B.Sc. Pure Math 10 Notes Unit 1: Polynomials Example 3: Find the shaded area of each of the followings. a. 5x + 4 b. 7x − 2 x + 2 3x + 1 x + 1 2x − 1 Shaded Area = Big Rectangle − Small Square x + 5 7x − 2 = (5x + 4) (2x − 1) − (x + 1) (x + 1) = (10x2 − 5x + 8x − 4) − (x2 + x + x + 1) x + 2 x + 2 = (10x2 + 3x − 4) − (x2 + 2x + 1) = 10x2 + 3x − 4 − x2 − 2x − 1 Shaded Area = 9x2 + x − 5 x + 5 (3x + 1) − (x + 2) = 2x − 1 Total Area = Top Rectangle + Bottom Rectangle = (7x −2) (x + 2) + (2x − 1) (x + 5) = (7x2 + 14x − 2x − 4) + (2x2 + 10x − x − 5) = (7x2 + 12x − 4) + (2x2 + 9x − 5) = 7x2 + 12x − 4 + 2x2 + 9x − 5 Total Area = 9x2 + 21x − 9 3-3 Homework Assignment Regular: pg. 107-109 #1 to 77 (odd), 87, 88 AP: pg. 107-109 #2 to 84 (even) , 85, 87, 88, 91 Copyrighted by Gabriel Tang, B.Ed., B.Sc. Page 5. Unit 1: Polynomials Pure Math 10 Notes 3-4: Special Products (x + y)2 = (x + y) (x + y) (x + y)2 is NOT x2 + y2 (x + y)3 = (x + y) (x + y) (x + y) Example 1: Simplify the followings. a. (2x + 3)2 b. (x − 2)3 = (2x + 3) (2x + 3) = (x − 2) (x − 2) (x − 2) = 4x2 + 6x + 6x + 9 = (x − 2) (x2 − 2x − 2x + 4) = 4x2 + 12x + 9 = (x − 2) (x2 − 4x + 4) = x3 − 4x2 + 4x − 2x 2 + 8x − 8 = x3 − 6x2 + 12x − 8 c. (3x + 2)2 − (2x − 1)2 Example 2: Find the volume of the box below. = (3x + 2) (3x + 2) − (2x − 1) (2x − 1) = (9x2 + 6x + 6x + 4) − (4x2 − 2x − 2x + 1) 2x + 1 = (9x2 + 12x + 4) − (4x2 − 4x + 1) 3x − 1 = 9x2 + 12x + 4 − 4x2 + 4x − 1 3x − 1 = 5x2 + 16x + 3 Volume = Length × Width × Height V = (3x − 1)2 (2x + 1) 3-4 Homework Assignment V = (9x2 − 3x − 3x + 1) (2x + 1) Regular: pg.112-113 #1 to 47 (odd), 49, 51, 54 (a, c, e, g), 55 (a, c, e, g), 56 V = (9x2 − 6x + 1) (2x + 1) AP: pg.112-113 #2 to 48 (even), 49 to 53, V = 18x3 + 9x2 − 12x2 − 6x + 2x + 1 54 (b, d, f, h), 55 (b, d, f, h), 56, 57 Volume = 18x3 − 3x2 − 4x + 1 Page 6. Copyrighted by Gabriel Tang, B.Ed., B.Sc. Pure Math 10 Notes Unit 1: Polynomials 3-6: Common Factors Common Factors can consist of two parts: a. Numerical GCF: - Greatest Common Factor of all numerical coefficients and constant. b. Variable GCF: - the lowest exponent of a particular variable. After obtaining the GCF, use it to divide each term of the polynomial for the remaining factor. Example 1: Factor the followings a. 3x2 + 6x + 12 b. 4a2b − 8ab2 + 6ab GCF = 3 GCF = 2ab = 3 (x2 + 2x + 4) = 2ab (2a − 4b + 3) Factor by Grouping (Common Brackets as GCF) a (c + d) + b (c + d) = (c + d) (a + b) Common Brackets Take common bracket out as GCF Example 2: Factor. a. 3x (2x − 1) + 4 (2x − 1) b. 2ab + 3ac + 4b2 + 6bc = (2x − 1) (3x + 4) = (2ab + 3ac) + (4b2 + 6bc) = a (2b + 3c) + 2b (2b + 3c) = (2b + 3c) (a + 2b) c. 3x2 − 6y2 + 9x − 2xy2 = (3x2 − 6y2) + (9x − 2xy2) = 3 (x2 − 2y2) + x (9 − 2y2) Brackets are NOT the same! We might have to first rearrange terms. Try again after rearranging terms! 3x2 + 9x − 2xy2 − 6y2 = (3x2 + 9x) − (2xy2 + 6y2) Switch Sign in Second Bracket! 2 We have put a minus sign in front of a new = 3x (x + 3) − 2y (x + 3) bracket! = (x + 3) (3x − 2y2) Copyrighted by Gabriel Tang, B.Ed., B.Sc. Page 7. Unit 1: Polynomials Pure Math 10 Notes Example 3: Find the area of the shaded region in factored form and as a polynomial. Shaded Area = Area of Square − Area of Circle 2 x Shaded Area = x2 − π x 2 πx 2 Shaded Area = x2 − (Polynomial Form) 4 π Shaded Area = x 2 1− (Factored Form) 4 Area of a Circle A = πr2 x Radius of Circle = 2 3-6 Homework Assignments Regular: pg. 120 #1 to 35 (odd), 38 to 43 AP: pg.120 #2 to 36 (even), 37 to 44 Page 8. Copyrighted by Gabriel Tang, B.Ed., B.Sc. Pure Math 10 Notes Unit 1: Polynomials 3-8: Factoring x2 + bx + c (Leading Coefficient is 1) x2 + bx + c What two numbers multiply to give c, but add up to be b? Example 1: Completely factor the followings. 2 Product of 6 2 a. x + 5x + 6 b. x − 3x − 10 Product of −10 1 6 −1 −6 −1 10 1 −10 2 3 = (x + 2) (x + 3) −2 − 3 = (x + 2) (x −5) −2 5 2 −5 sum of 5 sum of −3 Product of 15 c. a2 − 8a + 15 d. x2 − 7xy + 12y2 Product of 12 1 15 −1 −15 1 12 −1 −12 3 5 = (a − 3) (a − 5) −3 − 5 = (x − 3y) (x −4y) 2 6 −2 −6 3 4 −3 −4 sum of −8 sum of −7 e. x2y2 − 6xy − 16 Product of −16 f. 14 – 5w − w2 −1 16 1 −16 Rearrange in = (xy + 2) (xy − 8) −2 8 2 −8 = −w2 − 5w + 14 Descending Degree.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us