Introduction to Robotics Lecture Note 11: Dynamics of a Single Rigid Body

Introduction to Robotics Lecture Note 11: Dynamics of a Single Rigid Body

ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of a Single Rigid Body Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 1 / 24 Outline Kinetic Energy of a Rigid Body • Rotational Inertia Matrix • Newton Euler Equation • Twist-Wrench Formulation of Rigid-Body Dynamics • Outline Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 2 / 24 Robot Dynamic Model Can be Complicated • Dynamic model of PUMA 560 Arm: sin(q2 q2 93). And when a product of several trigoDometric + + 12 = +I16 * (C223 * C5 - 5’223 * C4 * 5’5) + 121 * SC23 * CC4 operations on the same joint variable appears we write GG2 to +I20 * ((I+ CC4) * SC23 * SS5 - (1 - 2 * SS23) * C4 * SC5) I3 = mean cos(q2) * cos(q2) and GS4 to mean cos(q4) * sin(q4). These +I22 * ((1- 2 * 5’5’23) * C5 - 2 * SC23 * C4 * S5)) final abbreviations, GS4 etc. , are considered to be factorizations; +Ilo* (1- 2 * ss23) + (1 - 2 ss2) ; and the cost of computing these terms is included in the totals N -2.76 * SC2 + 7.44XlO-’ * C223 + 0.60 * SC23 reported above. - 2.13~10-~* (1 - 2 * SS23) . The position of zero joint angles and coordinate frame at- Is = bl13 = 2 {I5 * C2 * C23 + I7 * SC23 - I12 * C2 * 523 tachments to the PUMA arm are shown in Figure 2 above. The I, = +Ils*(2*sc23*c5+(1-2*ss23)*c4*s5) modified Denavit-Hartenberg parameters, assigned according to +I16 * C2 * (C23* C5 - S23* C4 * 5’5) + 121 * SC23 * CC4 the method presented in [Craig 851, are listed in Table AI. +I20 * ((1 + CC4) * 5c23 * 555 - (1- 2 * 5523) * C4 * 5c5) +I22 ((1 - 2 * 5523) * C5 - 2 * 5c23 * C4 * 55)} I7 = +I10 * (1- 2 * SS23) ; Table Al. Modified Denavit - Hartenberg Parameters X 7.44~10~’* C2 * C23 + 0.60 * SC23 + 2.20~10-~* C2 * S23 - 2.13~10-~* (1 - 2 * SS23) . i Qi-1 8; ai- 1 d; bllr = 2*{-115*sc23*54*s5-116*c2*c23*s4*s5 (degrees) (meters) (meters) +I18 * C4 * S5 - 120 * (SS23 * SS5 * SC4 - SC23 * 54 * SC5) -122 * CC23 * S4 * S5 - I21 * SS23 * SC4} ; 1 0 ¶1 0 0 x -2.50~10-~* SC23 * S4 * S5 + 8.60~10-~* C4 * 55 2 -90 92 0 .2435 - 2.48xlO-’ * C2 * C23 * S4 * S5 . ,4318 6115 = 2 * {I20 * (SC5 * (CC4 * (1 - CC23) - CC23) -SC23 * C4 * (1- 2 * SS5)) - 115 (SS23 * S5 - SC23* 6‘4 * C5) *'Ti -116*C2*(S23*S5-C23*C4*C5)+118*S4*C5 +I22 * (CC23 * C4 * C5 - SC23 * S5)} 90 P0 N -2.50~10-~* (SS23 * S5 - SC23 * C4 * C5) i- -. - 2.48~lo-’ * C2 * (S23* 55 - C23 * C4 * C5) + 8.EOxlO-4 * 54 * C5. The equations of the PUMA model constants are presented inTable A2; these const,ants appear in the dynamic equations b116 = 0. of Tables A4 through A7. Z,,;and mi refer to the second mo- blzs = 2*{-Ib*s23+Ils*C23+116*s23*S4*s5 ment of link i about the z axis of frame i and the mass of link +I18 * (C23* C4 * S5 + S23 * C5) + 119 * C23 * SC4 i respectively. The terms a; and di are the Denavit-Barterberg +I20 * S4 * (C23 * C4 * CC5 - 523 * SC5) parameters. Terms of the form rzi are the offsets to the center +Iz2 * G23 * S4 * S5) ; of gravity of link i in the ith coordinate frame. In Table A3 the x 2,67xlO-’ * S23 - 7.58x10-’ * C23 . values of the model constants are listed. The terms I,,,; are the 6124 = -118 * 2 * S23 * 5’4 * S5+ 119 * 523 * (1- (2 * SS4)) motor and drive train contribution to inertia at joint i. +120*S23*(1-2*SS4*CC5)-114*S23; %Ow The equations for the elements of the kinetic energy matrix, Part 11. Gravitional Constants b125 = I1,*C23*S4+Il8*2*(s23*C4*C5+c23*s5) A(q), arepresented in Table A4. A(p) is symmetric, so only 81 = -g*((m~+m4+m5+m~)*az+m2*rz2); +120*s4*(C23*(1-2*SS5)-s23*C4*2*SC5); equations for elementson and above the matrix diagonal are pre- gz = g*(m.s*ry3-(m4+m5+m6)*d4-m4*r,4); X0. sented. g3 = g * m2 * ry2 ; The equations for the elements of the Coriolis matrix, B(q), 6126 = -Izs*(S23*C5+C23*C4*S5); xO. 84 = -g*(m4+m5+rn6)*as; are presented in Table A5. The Coriolis terms have been left in 613, = 6124 - 6135 = blzs * 6156 = b126 * the form of a three dimensional array, with a convention for the g.5 = -g * m.5 * rZ6; bl45 = 2 * {I15 * S23 * C4 * C5 + 116 * C2 c C4 * C5 indices that matches that of the Cristoffel symbols. Element +Ils*c23*s4*c5+122*C23*c4*C5}+I17*s23*C4 Table AS. Computed Values for the Constants Appearing multiples qk and ql to give a contribution to the torque at joint i. -I*o * (s23* c4 * (I - 2 * SS5) + 2 * C23 :: SC5) ; in the Equations of Forces of Motion. b424 = 0 . The Coriolis matrix may also be written as a 6 x 15 array, where XO. the 15 columnscorrespond to the 15 possiblecombinations of (Inertial constants have units of kilogram meters-squared) 6146 = I23 * 5’23 * S4 * 55 ; N 0 . joint velocities. The equations for the elements of the centrifugal 1.43 f 0.05 matrix, C(q),are presented in Table A6. And the equations for 1.38 f 0.05 b156 = -123 * (6’23 * 5’5 + ,523 * C4 * c5) ; X 0. the terms of the gravity vector, g(p), are presented in Table A7. 3.72~10-I f 0.31~10-~ b212 = 0 . b2ls 0. A load can be represented in this model by attaching it to 2.98xlO-' f 0.29~10-~ the gfh link. In the model the 6'h link is assumed to havea 2.38~lO-~f 1.20~10-~ bzlr = Ilt * S23 + 119 * S23* (1- (2* SS4)) +2*{-Il5*C23*C4*S5+116*S2*C4*S5 center of gravity on the axis of rotation, and tohave Zzze = &e; -1.42~10-~f 0.70~10~~ +I20 * (523 * (CC5 * CC4 - 0.5) + C23 * C4 * SC5) these rest,rictions extend to a load represented by changing the -3.79~10-' f 0.90~10-~ 1.25~10-~f 0.30~10-~ +I22 * S23 * G4 t S5) ; 6'h link parameters. A moregeneral, though computationclly 6.42xlO-' f 3.00~10-~ X 1.64X10-s * 5’23 - 2.50~10-~* C23 * C4 * S5 + more expensive, method of incorporating a load in the dynamic 3.00~10-~f 14.0~10-~ 2.48~10-’* S2 C4 * S5 + 0.30~10-’ * 523 * (1 - (2* ss4)). calculation is presented in [Izaguirre and Paul 19851. -I.OOX~O-~ f 6.00~10-~ bzla =2*{-115*C23*S4*C5+122*S23*S4+C5 ~.OOXIO-J+ 2.00~10-5 Table A2. Expressions for the Constants Appearing in the +116*S2*S4*C5}-I17*C23*s4 Equations of Forces of Motion. +rzo~(C23~s4~(1-2~ss5)-2~s23~sC4~SC5); X -2.50~10-’ * C23 * S4 * C5 + 2.48~10-~* 52 * 54 * c5 - 6.42x10-’ * C23 * 54 . Part I. Inertial Constants I1 = IZzl+ ml * rYl2+ mz * d2' + (m4 + m5 + m,) * (Gravitationalconstants have units of newton meters) b216 = -6126 * = gz +mz * rzz2 + (ms + m4 + m5 + m6) * (d2+ dS)' gl -37.2 f 00.5 = -8.44 f 0.20 b223 =2*{-112*S3+I~*C3+116*(C3*C5-53*C4*S5))j = 1.02 0.50 = 2.49~10-' 0.25XIO-' +IZZZ+ Iyys + 2 * m2 * d2 * rz2 + m2 * rYz2+ mS * rrlz gs f g* f a 2.20~10-~* S3 + 7.44x10-’ * C3 . +2 * ms * (d2 + d3) * rzS+ I,,, + Iyy5+ Irz6 ; gs = -2.82~10-' f 0.56X10-2 517 516 518 Kinetic Energy Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 3 / 24 Kinetic Energy • Consider a point mass ¯m with s -frame coordinate p(t), its kinetic energy is given by f g 1 = ¯m p_ 2 K 2 k k • Note: m denotes moment (vector) and ¯m denotes mass (scalar). • Question: given a moving rigid body with configuration T (t) = (R(t); p(t)), how to compute its kinetic energy? - Rigid body consists of infinitely many \particles" with different fsg-frame velocities 1 X 2 K ≈ ¯mikp_ik 2 i - Velocities of particles p_i are caused by the rigid body velocity (twist) - The overall kinetic energy should depend on the rigid body velocity as well as the geometry and mass distribution of the body Kinetic Energy Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 4 / 24 Recall: Rigid Body Velocity Given rigid body T (t) = (R(t); p(t)): • Spatial twist: • Body twist: Kinetic Energy Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 5 / 24 Recall: Rigid Body Velocity • Consider a particle i on the body with b -frame coordinate r and s -frame f g i f g coordinate pi - Velocity of particle i: - Acceleration of particle i: - Velocity of the origin of fbg: Kinetic Energy Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 6 / 24 Rigid Body Kinetic Energy • Kinetic Energy: Given a rigid body T (t) = (R(t); p(t)) with body twist b = (!b; vb). Suppose the b -frame origin coincides with the center of massV of the body. Then itsf kineticg energy is given by: 1 1 = ¯m v 2 + !T ! ; with = ρ(r)[r]T [r]dV K 2 k bk 2 b Ib b Ib ZB where is the rotational inertia matrix in body frame Ib Derivation: Divide the body into small point masses, where point i has mass ¯mi, fbg-frame coordinate ri, and fsg-frame coordinate pi Kinetic Energy Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 7 / 24 Derivation of Kinetic Energy (Continued) • Kinetic Energy Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 8 / 24 Outline Kinetic Energy of a Rigid Body • Rotational Inertia Matrix • Newton Euler Equation • Twist-Wrench Formulation of Rigid-Body Dynamics • Rotational Inertia Matrix Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 9 / 24 Rotational Inertia Matrix in Body Frame ρ(r)[r]T [r]dV Ib , ZB • Individual entries of : Ib 2 3 Ixx Ixy Ixz Ib = 4 Iyx Iyy Iyz 5 Izx Izy Izz where Z Z 2 2 2 2 Ixx = (y + z )ρ(x; y; z)dV; Iyy = (x + z )ρ(x; y; z)dV B B Z Z 2 2 Izz = (x + y )ρ(x; y; z)dV; Ixy = Iyx = − xyρ(x; y; z)dV B B Z Z Ixz = Izx = − xzρ(x; y; z)dV Iyz = Izy = − yzρ(x; y; z)dV B B • If the body has a uniform density, then b is determined exclusively by the shape of the rigid body I Rotational Inertia Matrix Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 10 / 24 Principal Axes of Inertia Let v1; v2; v3 and λ1; λ2; λ3 be the eigenvectors and eigenvalues of b, respectively.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    24 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us