Electrical and Thermal Design of High Efficiency and High Power Density Power Converters by Andrew Yurek A thesis submitted to the Department of Electrical and Computer Engineering In conformity with the requirements for the degree of Master of Applied Science Queen’s University Kingston, Ontario, Canada (January 2020) Copyright © Andrew Yurek, 2020 Abstract This thesis investigates high power density power converters from two approaches: electrical circuit and module design, and thermal management and mitigation. Three specific topics are studied in this thesis: Point-of-Load (POL) power module packaging, thermomechanical structures for high power density power converters, and single-stage resonant converters with Power Factor Correction (PFC) for the Electric Vehicle (EV) On-Board Charging (OBC) application. A new POL power module packaging structure called Power-System-in-Inductor (PSI2) is analyzed against traditional plastic packaging. PSI2 promises lower loss and higher package thermal conductivity by replacing a traditional plastic casing with the magnetic inductor core. Thermal analysis and FEA thermal simulation are conducted to verify the new packaging technology. Identical buck power modules are developed and tested experimentally. Simulation and experimentation show the PSI2 package achieves 2.68% greater efficiency, 0.51W less loss, and 26˚C lower top temperature compared to the traditionally plastic packaged module. Thermal conductivity of the PSI2 package accounts for about 33% of the improved thermal performance. A new thermomechanical structure is proposed named Integrated Multi-Layer Cooling (IMLC). The IMLC structure uses multiple-PCB layers, integrated active liquid cooling, and component sorting to achieve increased power density while maintaining thermal performance compared to a traditional single-PCB liquid cooled structure. FEA thermal simulation and experimentation with an EV Low-Voltage DC converter (LDC) show the IMLC structure achieves a 46°C peak temperature rise decrease and 0.6% improved efficiency over air cooled designs. Additionally, power density is improved by 31% compared to a single-PCB liquid cooled design. i A single-stage LLC converter with PFC is designed for use in the EV OBC application. This topology promises improved power density, lower loss, and less complexity compared to traditional two-stage PFC designs by removing one switching converter stage. The circuit schematic and PCB layout are designed to achieve maximum power density and minimum loss. Simulation and experimental verification are conducted to verify the electrical performance and high-power density of 2.3kW/L of this topology. A high-power density, 1.65kW single-stage LLC OBC experimental prototype is designed which achieves 99.1% power factor and 96.9% efficiency at 1.47kW operation. ii Acknowledgements I am eternally grateful to have had the opportunity to study under Dr. Yan-Fei Liu. His supervision has been nothing short of excellent. He has always provided support and guidance in my studies and has pushed me to become a better student and person. I have greatly appreciated his generosity, compassion, and humor and aspire to possess these qualities myself. I will always look back fondly on the time I have spent under his guidance. I am additionally grateful for the colleagues I have had the opportunity to work with. My colleagues Dr. Yang Chen, Dr. Xiang Zhou, Wenbo Liu, Sam Webb, Bo Sheng, Mojtaba Forouzesh, Binghui He, and Richard Sun have been a pleasure to work with and have helped to teach and guide me in my research. I have appreciated their friendships and the time I have spent with them in the lab and at conferences. I am finally grateful for my family and friends for providing so much for me and supporting me along the way. I am very privileged to have had the opportunity to study at Queen’s University and acquire a higher education. I could not have achieved any of my success by myself. I am forever grateful for the family I have. iii Table of Contents Abstract .......................................................................................................................................................... i Acknowledgements ...................................................................................................................................... iii List of Figures ............................................................................................................................................. vii List of Tables ................................................................................................................................................ x Introduction and Purpose of Research .......................................................................................... 1 1.1 Introduction ......................................................................................................................................... 1 1.1.1 Power Modules and Packaging .................................................................................................... 1 1.1.2 Thermomechanical Design of Power Converters ........................................................................ 3 1.1.3 Power Converters in Electric Vehicle Applications ..................................................................... 4 1.2 Thesis Objective .................................................................................................................................. 6 1.3 Thesis Outline ..................................................................................................................................... 7 Thermal and Electrical Analysis of Power-System-in-Inductor (PSI2) Technology ................... 9 2.1 Introduction ......................................................................................................................................... 9 2.2 Literature Review .............................................................................................................................. 10 2.2.1 Power-Supply-in-Inductor and Integrated Power Modules ....................................................... 10 2.2.2 Principles of Thermal Modeling ................................................................................................ 13 2.3 Structure of Integrated PSI2 Technology .......................................................................................... 18 2.3.1 Power Module Design and Fabrication ...................................................................................... 18 2.4 Thermal Equivalent Circuit (TEC) Modeling ................................................................................... 21 2.4.1 Loss Analysis ............................................................................................................................. 21 2.4.2 Thermal Equivalent Circuit Model Analysis ............................................................................. 23 2.5 FEA Thermal Simulation .................................................................................................................. 26 2.5.1 FEA Simulation, 8A Load Test .................................................................................................. 27 2.5.2 FEA Simulation, 3W Constant Loss Test .................................................................................. 28 2.5.3 Summary of Simulated Results .................................................................................................. 30 2.6 Experimental Results ........................................................................................................................ 31 2.6.1 Test Setup and Conditions ......................................................................................................... 31 2.6.2 Constant Current Tests ............................................................................................................... 31 2.6.3 Constant Loss Tests ................................................................................................................... 36 2.6.4 Analytical Versus Experimental Results .................................................................................... 40 2.7 Conclusion ........................................................................................................................................ 40 Integrated Multi-Layer Cooling (IMLC) Structure for High Power Density Converters .......... 42 iv 3.1 Introduction ....................................................................................................................................... 42 3.2 Literature Review .............................................................................................................................. 43 3.3 Structure of IMLC ............................................................................................................................. 47 3.3.1 Power Converter for Testing ...................................................................................................... 47 3.3.2 IMLC Structure .......................................................................................................................... 49 3.4 Loss Analysis and Thermal Modeling .............................................................................................. 54 3.4.1 Loss Analysis ............................................................................................................................. 54 3.4.2 PCB Thermal Modeling
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages150 Page
-
File Size-