Electromagnetic Duality for Children

Electromagnetic Duality for Children

Electromagnetic Duality for Children JM Figueroa-O'Farrill [email protected] Version of 8 October 1998 Contents I The Simplest Example: SO(3) 11 1 Classical Electromagnetic Duality 12 1.1 The Dirac Monopole ....................... 12 1.1.1 And in the beginning there was Maxwell... 12 1.1.2 The Dirac quantisation condition . 14 1.1.3 Dyons and the Zwanziger{Schwinger quantisation con- dition ........................... 16 1.2 The 't Hooft{Polyakov Monopole . 18 1.2.1 The bosonic part of the Georgi{Glashow model . 18 1.2.2 Finite-energy solutions: the 't Hooft{Polyakov Ansatz . 20 1.2.3 The topological origin of the magnetic charge . 24 1.3 BPS-monopoles .......................... 26 1.3.1 Estimating the mass of a monopole: the Bogomol'nyi bound ........................... 27 1.3.2 Saturating the bound: the BPS-monopole . 28 1.4 Duality conjectures ........................ 30 1.4.1 The Montonen{Olive conjecture . 30 1.4.2 The Witten e®ect ..................... 31 1.4.3 SL(2; Z) duality ...................... 33 2 Supersymmetry 39 2.1 The super-Poincar¶ealgebra in four dimensions . 40 2.1.1 Some notational remarks about spinors . 40 2.1.2 The Coleman{Mandula and Haag{ÃLopusza¶nski{Sohnius theorems .......................... 42 2.2 Unitary representations of the supersymmetry algebra . 44 2.2.1 Wigner's method and the little group . 44 2.2.2 Massless representations . 45 2.2.3 Massive representations . 47 No central charges .................... 48 Adding central charges . 49 1 [email protected] draft version of 8/10/1998 2.3 N=2 Supersymmetric Yang-Mills . 51 2.3.1 N=1 d=6 supersymmetric Yang{Mills . 52 2.3.2 From N=1 in d=6 to N=2 in d=4 . 57 2.3.3 Higgsed N=2 supersymmetric Yang{Mills . 59 2.3.4 N=2 avatar of the BPS-monopole . 60 2.3.5 The supersymmetry bound is the Bogomol'nyi bound . 62 The supersymmetry algebra in six dimensions . 63 The supersymmetry algebra in four dimensions . 64 2.4 N=4 Supersymmetric Yang-Mills . 66 2.4.1 N=1 d=10 supersymmetric Yang{Mills . 67 2.4.2 Reduction to d=4: N=4 supersymmetric Yang{Mills . 69 2.4.3 Monopoles and gauge bosons in N=4 supersymmetric Yang{Mills ........................ 74 2.4.4 The mass bound for N=4 super Yang{Mills . 76 The supersymmetry algebra in ten dimensions . 77 The supersymmetry algebra in four dimensions . 78 3 Collective Coordinates 80 3.1 The metric on the moduli space . 81 3.1.1 The physical con¯guration space . 81 3.1.2 The metric on the physical con¯guration space . 82 3.1.3 The metric on the moduli space . 84 3.1.4 The 1-monopole moduli space . 85 3.1.5 The quantisation of the e®ective action . 87 3.1.6 Some general properties of the monopole moduli space 88 3.2 dim Mk = 4k ........................... 89 3.2.1 The dimension as an index . 90 3.2.2 Computing the index of D . 92 3.2.3 Computing the current Ji(x; x) . 96 3.3 A quick motivation of hyperkÄahlergeometry . 99 3.3.1 Riemannian geometry . 100 3.3.2 KÄahlergeometry . 103 3.3.3 Ricci flatness . 107 3.3.4 HyperkÄahlergeometry . 109 3.4 Mk is hyperkÄahler . 111 3.4.1 Symplectic quotients . 111 3.4.2 KÄahlerquotients . 113 3.4.3 HyperkÄahlerquotients . 116 3.4.4 Mk as a hyperkÄahlerquotient . 116 3.4.5 Another proof that Mk is hyperkÄahler . 119 2 [email protected] draft version of 8/10/1998 4 The E®ective Action for N=2 Supersymmetric Yang{Mills 122 4.1 Fermionic collective coordinates . 123 4.1.1 Computing the index . 124 4.1.2 Using supersymmetry . 125 4.2 The e®ective action . 127 4.3 N=4 supersymmetry of the e®ective action . 130 4.3.1 N=4 supersymmetry in R4: a toy model . 131 4.3.2 N=4 supersymmetry in hyperkÄahlermanifolds . 132 4.3.3 N=4 supersymmetry of Le® . 134 4.4 A brief review of harmonic theory . 136 4.4.1 Harmonic theory for riemannian manifolds . 136 4.4.2 Harmonic theory for KÄahlermanifolds . 139 4.4.3 Explicit formulas for @¹ and @¹¤ . 142 4.5 Quantisation of the e®ective action . 144 4.5.1 Canonical analysis . 144 4.5.2 The quantisation of the e®ective hamiltonian . 146 5 The E®ective Action for N=4 Supersymmetric Yang{Mills 149 5.1 Fermionic collective coordinates . 150 II Arbitrary Gauge Groups 153 6 Monopoles for Arbitrary Gauge Groups 154 6.1 Topologically stable solutions . 154 6.1.1 Some elements of homotopy . 156 The fundamental group . 157 Higher homotopy groups . 162 6.1.2 Homotopy classi¯cation of ¯nite-energy con¯gurations . 166 Adding topological charges . 171 6.2 The Dirac quantisation condition . 174 6.3 Some facts about compact Lie groups and Lie algebras . 177 6.3.1 Compact Lie groups . 177 6.3.2 The Weyl group . 180 6.3.3 Root systems and simple Lie algebras . 182 Reconstructing the group . 184 The centre of G~ . 186 An example: A3 = D3 . 188 Another example: D4 . 189 All the connected compact simple Lie groups . 190 6.3.4 Some simple examples . 192 3 [email protected] draft version of 8/10/1998 The simple root system A2 . 192 The simple root systems B2 = C2 . 194 The simple root system G2 . 195 6.4 The magnetic dual of a compact Lie group . 195 6.4.1 Some lattices and dual groups . 197 H abelian . 198 H simple . 198 An example: Spin(8) and its quotients . 200 Another example: Spin(12) and its quotients . 202 4 List of Exercises 1.1 Angular momentum due to the electromagnetic ¯eld . 17 1.2 The Zwanziger{Schwinger quantisation condition . 17 1.3 Dyonic spectrum in CP non-violating theories . 17 1.4 The spectrum of the model .................... 19 1.5 Boundary conditions on H and K . 22 1.6 The equations of motion for H and K . 22 1.7 Asymptotic form of the electromagnetic ¯eld . 23 1.8 Gauge ¯eld-strength in the Higgs vacuum . 25 1.9 Additivity of the magnetic charge g§ . 26 1.10 Dirac quantisation condition revisited . 26 1.11 The Bogomol'nyi equation implies (1.10) . 29 1.12 The BPS-monopole ........................ 29 1.13 The mass density at the origin is ¯nite . 29 1.14 (P )SL(2; Z) and its action on the upper half-plane . 34 1.15 SL(2; Z)-invariance of the mass formula . 35 1.16 Orbifold points in the fundamental domain D . 36 1.17 Properties of the mass matrix A(¿) . 37 2.1 The little groups for positive-energy particles . 45 2.2 Helicity content of massless multiplets . 46 2.3 Highest spin in the multiplet ................... 48 2.4 Massive N=2 multiplets with s=0 and s=1=2 . 48 2.5 Short N=2 multiplets with s=0 and s=1=2 . 50 2.6 Short N=4 multiplets with s=0 . 51 2.7 N=1 supersymmetric Yang{Mills . 52 2.8 Supersymmetry variation of L . 54 2.9 A Fierz rearrangement ...................... 55 2.10 Some ¡-matrix identities ..................... 56 2.11 ... and the proof of supersymmetry invariance . 56 2.12 The supersymmetry multiplet . 56 2.13 L in a Majorana basis ...................... 57 5 [email protected] draft version of 8/10/1998 2.14 Explicit N=2 supersymmetry transformations . 58 2.15 The SO(2) Noether current ................... 59 2.16 The perturbative spectrum of the model . 59 2.17 Supersymmetric BPS-monopoles . 61 2.18 More γ-matrix identities ..................... 61 2.19 Some euclidean γ-matrices .................... 61 2.20 BPS-monopoles break one half of the supersymmetry . 62 2.21 Supersymmetric variation of the supercurrent . 63 2.22 The symmetric gauge-invariant energy momentum tensor . 64 2.23 The topological current ...................... 64 2.24 The \momenta" in the extra dimensions . 64 2.25 The e®ective electromagnetic ¯eld strength . 65 2.26 The space components of the topological charge . 66 2.27 The Majorana condition ..................... 67 2.28 Properties of Majorana and Weyl fermions . 68 2.29 Varying the lagrangian density . 68 2.30 A ten-dimensional Fierz identity . 69 2.31 Some more ¡-matrix identities . 69 2.32 so(4) »= so(3) £ so(3) explicitly . 70 2.33 Explicit realisation for ®I and ¯J . 71 2.34 The fundamental representation of su(4) . 71 2.35 The fermionic terms in the lagrangian . 73 2.36 N=4 supersymmetry transformations . 73 2.37 su(4) invariance .......................... 73 2.38 The perturbative spectrum after higgsing . 75 2.39 The supersymmetry algebra in ten dimensions . 77 2.40 Another topological current ................... 78 2.41 A self-dual 5-form ......................... 78 2.42 Momentum and topological charge in this background . 79 3.1 The BPS-monopole as an instanton . 82 3.2 D2 has no normalisable zero modes . 85 3.3 The electric charge ........................ 87 3.4 Two equations in one ....................... 90 3.5 Dy has no normalisable zero modes . 91 3.6 A formula for the index of D ................... 92 3.7 Another formula for I(M 2) .................... 92 3.8 Some properties of kernels .................... 93 3.9 Regularity properties of the propagator . 94 3.10 The ¯rst term doesn't contribute . 97 3.11 Another expression for the degree of the map Á . 99 6 [email protected] draft version of 8/10/1998 3.12 A coordinate-free expression for r .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    209 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us