Does a Single Large Facility Imply Increased Risk?

Does a Single Large Facility Imply Increased Risk?

Does a Single Large Facility Imply Increased Risk? R. R. Parker MFE ITER/Exp Plenary Does a Single Large Facility Imply Increased Risk? Short Answer: Yes, multiple large facilities would reduce risk, but this is not an option at present. Does a Single Large Facility Imply Increased Risk? Various types of risks can be identified: -Technical -Physics -Programmatic The technical risks can be minimized by a substantial R&D effort. See ITER posters. Physics Risks are Minimized by Maintaining a Strong Base Tokamak Program ST, Stellarator, RFP, other ICCs Base Tokamak Physics physics ASDEX-UG, DIII-D, JT-60U (SU?), JET, CMOD, Tore Supra, FT-U, KSTAR, Plasma Plasma New SC Tokamaks in China, India,…. Electricity Production ITER ETR/DEMO/PROTO Decision to proceed with tokamak-based fusion jor Facilities jor 14-MeV neutron source (Int’l) Ma Volumetric neutron source (?) Base Fusion Power Technologies chnologies Base Plasma Support technologies Fusion Te Fusion Programmatic Risks are Minimized by a Strong Base Stellarator/ICC Program ST, Stellarator, RFP, other ICCs LHD, W7-X, NCSX, TJ-II, ……. NSTX, MAST, …... Base Tokamak Physics physics ASDEX-UG, DIII-D, JT-60U (SU?), JET, CMOD, Tore Supra, FT-U, KSTAR, Plasma Plasma New SC Tokamaks in China, India,…. Electricity Production ITER ETR/DEMO/PROTO Decision to proceed with tokamak-based fusion jor Facilities jor 14-MeV neutron source (Int’l) Ma Volumetric neutron source (?) Base Fusion Power Technologies chnologies Base Plasma Support technologies Fusion Te Fusion ITER or a Sequence of Smaller Steps ? The key issue confronting development of the tokamak into an attractive reactor is sustaining an efficient steady-state (fBS > 70%) at high beta (βn > 3) and good confinement (HH > 1.5 @ q ~ 4.5). Control of such regimes must be demonstrated in a burning plasma under steady- state conditions (T >> τres). For this purpose, a device of the ITER class will be necessary before proceeding to ETR/Demo/Proto. Postponing the construction of ITER in favor of more modest steps only adds delay and cost to the possible realization of fusion energy. Ultimately an ITER-class machine must be successfully built and operated before An ETR/Demo/Proto -- Therefore risk is not reduced, only postponed. Does a Single Large Facility Imply Increased Risk? Short Answer: Yes, multiple large facilities would reduce risk, but this is not an option. Longer Answer: A sequence of smaller, possibly “safer” steps would entail lower risk, particularly with regard to investment. But finally an ITER class machine would be required before proceeding to ETR/DEMO/PROTO. Thus the risk is not reduced, only postponed. Risk can be “minimized” by aggressive, focussed R&D and maintaining strong tokamak, stellarator and ICC base programs (including theory and computation!) .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us