Transformation of 'Galia' Melon to Improve Fruit

Transformation of 'Galia' Melon to Improve Fruit

TRANSFORMATION OF ‘GALIA’ MELON TO IMPROVE FRUIT QUALITY By HECTOR GORDON NUÑEZ-PALENIUS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Hector Gordon Nuñez-Palenius This document is dedicated to the seven reasons in my life, who make me wake up early all mornings, work hard in order to achieve my objectives, dream on new horizons and goals, feel the beaty of the wind, rain and sunset, but mostly because they make me believe in God: my Dads Jose Nuñez Vargas and Salvador Federico Nuñez Palenius, my Moms Janette Ann Palenius Alberi and Consuelo Nuñez Solís, my wife Nélida Contreras Sánchez, my son Hector Manuel Nuñez Contreras and my daughter Consuelo Janette Nuñez Contreras. ACKNOWLEDGMENTS This dissertation could not have been completed without the support and help of many people who are gratefully acknowledged here. My greatest debt is to Dr. Daniel James Cantliffe, who has been a dedicated advisor and mentor, but mostly an excellent friend. He provided constant and efficient guidance to my academic work and research projects. This dissertation goal would not be possible without his insightful, invariable and constructive criticism. I thank Dr. Daniel J. Cantliffe for his exceptional course on Advanced Vegetable Production Techniques (HOS-5565) and the economic support for living expenses during my graduate education in UF. I extend my appreciation to my supervisory committee, Dr. Donald J. Huber, Dr. Harry J. Klee, and Dr. Donald Hopkins, for their academic guidance. I am very thankful to Dr. Donald J. Huber for his excellent advice on postharvest guidance, and also for his excellent lectures in Postharvest Physiology (HOS-6331). I am very grateful to Dr. Harry J. Klee for his constant supervision and help on plant molecular issues, as well as for his outstanding teaching in Molecular Biology of Plant Hormones (HOS-5306). I express my gratitude to Dr. Donald Hopkins for his welcoming assistance. I would like to express my deepest appreciation to Dr. Richard Lee and Dr. Charles Niblett for being part of my committee, although they had to leave before this dissertation was completed. I would like to extend an special thank to Dr. Charles Niblett for all his iv help when I arrived at UF, and for being an excellent mentor, but mostly for his exceptional friendship. I extend my appreciation to Dr. Mark Settles for allowing me to use his lab to accomplish some of the plant molecular issues, as well as to Diego Fajardo for his technical advice and untied camaraderie. I would like to make a special acknowledgement to my friends in the Seed Physiology Lab for their help and support during these years: Reggie Salazar, Dr. Do Kim, Dr. Javier Castellanos, Nicole Shaw, Dr. Ivanka Kozareva, Ashwin Paranjpe, Yousef Al-Dlaigan, Juan Carlos Rodriguez, Elio Jovicich, Jennifer Bonina, JeanMarie Mitchell, Teddy McAvoy, Jimmy Webb, Ji-Young and Cecil Shine III. I would like to thank my friends in the Plant Molecular Lab: Dr. Mark G. Taylor, Dr. Joseph A. Ciardi, Dawn Bies, Stephanie Maruhni, Michele Auldridge, Michele Zeigler, Anna Block, Patricia Moussatche, and especially Dr. Denise M. Tieman and Bryan Kevany for their outstanding technical advice and friendship to accomplish this dissertation. I would like to show appreciation to my friends in the Postharvest Lab: Dr. Steve A. Sargent, James Lee, Muharem Ergun, Yasart Karakurt, Kim Cordasco, Adrian Berry, Brandon Hurr and Daniel Stanley. I would like to express my deepest appreciation to the National Council for Science and Technology (CONACYT-México) and EDUCAFIN (Guanajuato-México) which have supported my scholastic and living expenses during my graduate education in UF. v TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iv LIST OF TABLES............................................................................................................. ix LIST OF FIGURES ........................................................................................................... xi ABSTRACT..................................................................................................................... xiv CHAPTER 1 INTRODUCTION ........................................................................................................1 2 LITERATURE REVIEW.............................................................................................4 2.1. Importance of Melon .............................................................................................4 2.1.1 Introduction ..................................................................................................4 2.1.2 Botany and Origin of Cucumis melo ............................................................5 2.1.3 Classification and Cultivars..........................................................................7 2.1.3.1 Naudin’s categories for Cucumis melo L. are listed below:...............9 2.1.3.2 Guis’s categories: ...............................................................................9 2.1.4 Climateric and Non-climateric Fruits.........................................................11 2.2 Postharvest Physiology of Melon .........................................................................11 2.2.1 Physiological Changes During Ripening....................................................11 2.2.2 Ethylene Production ...................................................................................14 2.2.3 Biochemical Changes During Ripening .....................................................15 2.2.3.1 Introduction ......................................................................................15 2.2.3.2 Carbohydrate Metabolism................................................................16 2.2.3.3 Organic Acids...................................................................................19 2.2.3.4 Volatiles ...........................................................................................20 2.2.3.5 Cell Wall Degradation......................................................................23 2.2.3.6 Pigments...........................................................................................26 2.2.4 Ethylene and Molecular Changes During Ripening...................................28 2.2.4.1 Introduction ......................................................................................28 2.2.4.2 Biosynthesis, Perception and Effects of Ethylene............................28 2.3 Melon Biotechnology ...........................................................................................36 2.3.1 Genetic Improvement .................................................................................36 2.3.1.1 Traditional Breeding ........................................................................36 2.3.1.2 Improvement Through Genetic Engineering....................................37 vi 2.3.1.3 Melon Biotechnology.......................................................................42 2.3.2 In vitro Regeneration..................................................................................43 2.3.2.1 Genetic Control ................................................................................44 2.3.2.2 Polyploidization and Somaclonal Variation.....................................46 2.3.2.3 Vitrification ......................................................................................51 2.3.3 Regeneration by Organogenesis.................................................................53 2.3.3.1 Medium Composition.......................................................................54 2.3.3.2 Environmental Factors .....................................................................60 2.3.4 Regeneration by Somatic Embryogenesis..................................................61 2.3.4.1 Medium Composition.......................................................................65 2.3.4.2 Environmental Factors .....................................................................66 2.3.5 Haploid Plants and Embryo Culture...........................................................67 2.3.6 Genetic Transformation..............................................................................70 2.3.6.1 Improvement of Disease Resistance ................................................76 2.3.6.2 Improvement of Tolerance to Physical Factors................................78 2.3.6.3 Improvement of Postharvest Characteristics....................................78 2.4 ‘Galia’ melon........................................................................................................82 2.4.1 Introduction ................................................................................................82 2.4.2 Botany and Origin ......................................................................................83 2.4.3 Postharvest Physiology...............................................................................86 2.4.4 Genetic Improvement by Conventional Methods and Biotechnology .......89 3 EFFECT OF EXPLANT SOURCE ON REGENERATION AND TRANSFORMATION EFFICIENCY IN ‘GALIA’ MELON (Cucumis melo L.) MALE AND FEMALE PARENTAL LINES ............................................................95 3.1 Introduction...........................................................................................................95 3.2 Materials and

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    230 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us