Appendix 5.1. Evaluation of the Model for Cellobiose-To-Glucose Reaction

Appendix 5.1. Evaluation of the Model for Cellobiose-To-Glucose Reaction

<p> Supplementary Material Appendix 5.1. Evaluation of the model for cellobiose-to-glucose reaction</p><p>90 E1, fitted E2, fitted 80 E2 no trans, no transglycosylation, fitted ) L</p><p>/ 70 E3, fitted g (</p><p>E3 no trans, no transglycosylation, fitted n 60 o</p><p> i E5, fitted t a r</p><p> t 50 n e c</p><p> n 40 o c</p><p> e 30 s</p><p>90 o E1 mean, no inhibitor, experimental c u</p><p> l 20 90 E1, fitted E2 mean, 25 g/L glucose, experimental 80 G E2, fitted E3 mean, 50 g/L glucose, experimental 10 80 70 E2 no trans, no transglycosylation, fitted E5 mean, 80 g/L xylose, experimental</p><p>) E3, fitted L</p><p>0 / 70</p><p>60 g</p><p>( E3 no trans, no transglycosylation, fitted</p><p> n 60 E5, fitted o</p><p>50 0 i 12 24 36 48 60 72 t a r t 50 Time (hr) 40 n e c</p><p> n 40</p><p>30 o c</p><p>E1, no inhibitor,e 30 experimental E1, fitted s</p><p>20 o E2, fitted</p><p>E2, 25 g/L glucose,c experimental u E3, 50 g/L glucose,l 20 experimental E2 no trans, no transglycosylation, fitted</p><p>10 G E5, 80 g/L xylose, experimental E3, fitted 10 0 E3 no trans, no transglycosylation, fitted 0 E5, fitted 0 12 24 36 48 60 72 0 12 24 36 48 60 72 Time (hr) Fig. A1. Parameter estimation of cellobiose hydrolysis reaction. 37.5 g/L cellobiose hydrolyzed by N188 (3.9 mg-protein/g-substrate) with different initial inhibitor background. Background with 40 g/L xylose (E4) is not shown. Fiiting curves without the incorporation of transglycosylation reaction are also shown. 90</p><p>80 ) L</p><p>/ 70</p><p> g D1 (</p><p> n 60 D2 o i t D3 a r t 50 D5 n e c</p><p> n 40 o</p><p> c D1 90 e 30 90 D2 s o</p><p>80 c D3</p><p> u 80 l 20 ) D5 G L ) / 70 L g</p><p>/ 70 D1, predicted (</p><p>10 g ( n 60 D2, predicted o n i</p><p> t 60 o</p><p> i D3, predicted a 0 t r t 50 a r</p><p> n D5, predicted t 50 e n c</p><p>0 e 12 24 36 48 60 72 n</p><p>40 c o n 40 c o Time (hr) c e 30 s e</p><p> o 30 s c o u c l 20 D1, no inhibitor, experimental D1, predicted D1, no inhibitor, experimental u l G D2,20 25 g/L glucose, experimental D2, predicted</p><p>G D2, 25 g/L glucose, experimental 10 D3, 50 g/L glucose, experimental D3, predicted 10 D3, 50 g/L glucose, experimental D5, 80 g/L xylose, experimental D5, predicted 0 D5, 80 g/L xylose, experimental 0 0 12 24 36 48 60 72 0 12 24 36 48 60 72 Fig. A2. Validation of cellobioseTime (hr)hydrolysis reaction. 37.5 g/L cellobiose hydrolyzed by N188 (1.95 Time (hr) mg-protein/g-substrate) with different initial inhibitor background. Background with 40 g/L xylose (D4) is not shown. Appendix 5.2. Evaluation of Model 1 (Strategy 1)</p><p>140 130 120 110 ) L</p><p>/ 100 g (</p><p>90 n o i</p><p> t 80 a r t 70 n e</p><p> c 60 A1, predicted n o</p><p>140 c 50 A2, predicted</p><p>140 e A3, predicted 130 s 40</p><p> o 130 c 30 A4, predicted</p><p>120 u l 120</p><p>G 20 110 110 A1, no inhibitor, experimental ) )</p><p>L 10 L A2, 50 g/L glucose, experimental</p><p>/ 100 / 100 g g (</p><p>( A3, 30 g/L cellobiose, experimental</p><p>0 90 </p><p> n 90 n A4, 80 g/L xylose, experimental o o i i t 80 0t 80 24 48 72 96 120 144 168 a a r r t 70 t n 70 Time (hr) n e e c 60 c 60 n n o 50 o c c</p><p>50 e e</p><p> s 40 s 40 o o c A1, predicted 30 A1,c no inhibitor, experimental u 30 u l A2,l 50 g/L glucose, experimental A2, predicted G 20 G 20 A3, 30 g/L cellobiose, experimental A3, predicted A1, no inhibitor, experimental 10 A4,10 80 g/L xylose, experimental A4, predicted A2, 50 g/L glucose, experimental 0 0 A3, 30 g/L cellobiose, experimental A4, 80 g/L xylose, experimental 0 24 48 72 0 96 24 120 48 144 72 168 96 120 144 168 Time (hr) Time (hr) Fig. A3. Validation of Model 1 (strategy 1). 100 g/L Avicel hydrolyzed by Celluclast (15.8 mg- protein/g-substrate) + N188 (5.9 mg-protein/g-substrate) with different initial inhibitor background.</p><p>90</p><p>80 B1, predicted 70 B2, predicted )</p><p>L B3, predicted /</p><p> g 60 (</p><p>B4, predicted n</p><p> o B5, predicted i</p><p> t 50</p><p> a B6, predicted r t</p><p> n B7, predicted</p><p> e 40 c n o</p><p> c 30 B1, no inhibitor, experimental e</p><p> s B2, 25 g/L glucose, experimental o</p><p> c 20</p><p> u B3, 50 g/L glucose, experimental l 90 G B4, 15 g/L cellobiose, experimental 10 B5, 30 g/L cellobiose, experimental 90 80 0 B6, 40 g/L xylose, experimental B7, 80 g/L xylose, experimental 80 0 70 24 48 72 96 120 144 168 ) L / Time (hr) 70 g 60 ( )</p><p>L n / o g i</p><p>( 60 t 50 a n r t o i t 50 n B1 a e 40 r c t B1, fitted B2 n n B1, no inhibitor, experimental o e 40</p><p> c B2, fitted c 30 B3</p><p>B2, 25 g/L glucose, experimental n e o B3, fitted B4 s B3, 50 g/L glucose, experimental c 30 o 20 c B4, fitted e B4, 15 g/L cellobiose, experimental B5 u s l o 20 B5, 30 g/L cellobiose, experimental B5, fitted B6 G c 10 u l B6, 40 g/L xylose, experimental B6, fitted B7 G 10 B7, fitted B70 , 80 g/L xylose, experimental 0 0 24 48 72 96 120 144 168 0 24 48 72 96 120 144 168 Time (hr) Fig. A4. ParameterTime estimation (hr) of Model 1 (strategy 1). 100 g/L Avicel hydrolyzed by Celluclast (10.5 mg-protein/g-substrate) with different initial inhibitor background. 100</p><p>90</p><p>80 ) L / 70 g (</p><p> n o</p><p> i 60 t a r t 50 n e c</p><p> n 40 o c</p><p> e 30 s o c u</p><p> l 20 G 10 100 100 0 90 90 0 24 48 72 96 120 144 168 ) 80</p><p>80 L / )</p><p> g Time (hr) L ( / 70</p><p> g 70 n (</p><p> o i n t o</p><p> a 60 i 60 r t t a n r t 50 e 50 n c e n c C1, predicted o C1, no inhibitor, experimental n</p><p>40 c 40 o C2, predicted c C2, 25 g/L glucose, experimental e</p><p> s e 30 C3, predicted o 30 C3, 50 g/L glucose, experimental s c o u c C4, 15 g/L cellobiose, experimental C4, predicted l u 20 l 20 G C5, 30 g/L cellobiose, experimental C5, predicted G 10 10 C6, 40 g/L xylose, experimental C6, predicted C7, 80 g/L xylose, experimental C7, predicted 0 0</p><p>0 24 480 7224 96 48 120 72 144 96 168 120 144 168 Fig. A5. ValidationTime (hr) of Model 1Time (strategy (hr) 1). 100 g/L Avicel hydrolyzed by Celluclast (21.1 mg- protein/g-substrate) with different initial inhibitor background.</p><p>90</p><p>80</p><p>70 ) L / g (</p><p>60 n o i t</p><p> a 50 r t n e</p><p> c 40 n o</p><p> c F, predicted 30 e</p><p> s G, predicted o c 20 H, predicted u l</p><p>G F, Cel / N188 = 15.8 / 3, experimental 10 G, Cel / N188 = 15.8 / 1, experimental 0 H, Cel / N188 = 31.6 / 5.9, experimental</p><p>0 24 48 72 96 120 144 168 Time (hr)</p><p>Fig. A6. Validation of Model 1 (strategy 1). 100 g/L Avicel hydrolyzed by different ratio of Celluclast/N188 loading with initial 40 g/L xylose background.</p><p>130 120 110</p><p>) 100 L / g</p><p>( 90</p><p> n o</p><p> i 80 t a r</p><p> t 70 n e</p><p> c 60 n o</p><p> c 50</p><p> e</p><p> s 40 o c</p><p> u 30 l I, 150 g/L, experimental G 20 J, 50 g/L, experimental 10 I, predicted 0 J, predicted</p><p>0 24 48 72 96 120 144 168 Time (hr) Fig. A7. Validation of Model 1 (strategy 1). 50 and 150 g/L Avicel hydrolyzed by Celluclast (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate). 100</p><p>90</p><p>80 ) L</p><p>/ 70 g (</p><p> n 60 o i t</p><p> a N, predicted r</p><p> t 50 n O, predicted e</p><p> c P, predicted</p><p> n 40 o</p><p> c Q, predicted</p><p>100</p><p> e 30 s</p><p> o 90 c N, no inhibitor, experimental</p><p> u 20 l</p><p>G 80 O, 50 g/L glucose, experimental 10 ) P, 30 g/L cellobiose, experimental L / 70 g Q, 80 g/L xylose, experimental (</p><p>0 n 60 o i t</p><p>0a 24 48 72 96 120 144 168 r</p><p> t 50 n</p><p> e Time (hr) c</p><p> n 40 o c 190 e 30 180 s o 170 c 20 N, no inhibitor, experimental u N, no inhibitor, experimental N, predicted 160 l G O, 50 g/L glucose, experimental O, predicted O, 50 g/L glucose, experimental 150 10 P, 30 g/L cellobiose, experimental 140 P, 30 g/L cellobiose, experimental P, predicted 130 0Q, 80 g/L xylose, experimental Q, predicted Q, 80 g/L xylose, experimental 120</p><p>) 110 0 24 48 72 96 120 144 168 L /</p><p> g 100</p><p>( Time (hr) 90 Fig.e A8. Validation of Model 1 (strategy 1). 90 g/L Barley straw hydrolyzed by Celluclast (15.8 s 80 o</p><p> c 70 u mg-protein/g-substrate)l 60 + N188 (5.9 mg-protein/g-substrate) with different initial inhibitor G background.50 N 40 O 30 20 P 10 Q 0 -10 -20 0 20 40 60 80 100 120 140 160 180 time (hr)</p><p>Appendix 5.3. Evaluation of Model 1 (Strategy 2)</p><p>130 120 110 100 ) L / 90 g (</p><p> n 80 o i t</p><p> a 70 r t n</p><p> e 60</p><p> c A1 n 50 o A2 c</p><p> e 40 A3 140 s o 130 A4 c 30</p><p>130 u l 120</p><p>G 20 120 A1, fitted 10110 110 A2, fitted ) 100 L )</p><p>/ 100 0</p><p>L A3, fitted g / (</p><p>90 g 90</p><p>( A4, fitted n 0 24 48 72 96 120 144 168 o n i t 80 80 o i a t r Time (hr) t 70 a 70 r n t e n c 60</p><p> e 60 n</p><p> c A1 o n</p><p> c 50</p><p>50 o A2 e c</p><p> s 40 e o 40 A3 s c A1, no inhibitor, experimental A1, fitted</p><p>30 o u</p><p> l A4 c 30 A2, 50 g/L glucose, experimental A2, fitted G u</p><p>20 l</p><p>G 20 A3, 30 g/L cellobiose, experimental A3, fitted 10 10 A4, 80 g/L xylose, experimental A4, fitted 0 0 0 24 48 72 96 120 144 168 Fig. A9. Parameter estimation of Model 1 (strategy 2). 100 g/L Avicel hydrolyzed by Celluclast 0 Time (hr)24 48 72 96 120 144 168 (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate)Time (hr) with different initial inhibitor background. 90</p><p>80</p><p>70 ) L / g (</p><p>60 n o i t</p><p> a 50</p><p> r B1 t n</p><p> e B2</p><p> c 40</p><p> n B3 o c 30 B4 e</p><p> s B5 o</p><p> c 20 B6 u l</p><p>G B7 90 10</p><p>90 80 0</p><p>80 70 0 24 48 72 96 120 144 168</p><p>70 60 Time (hr) ) ) L / L / g 60 ( 50 g</p><p>( n e o i s t 50 40 o a c r t</p><p> u B1, predicted l n B1, no inhibitor, experimental</p><p> e 40 30 G B2, predicted c B2, 25 g/L glucose, experimental n o B3, 50 g/L glucose, experimental B3, predicted c 30 20 B4, predicted e B4, 15 g/L cellobiose, experimental s o 20 10 B5, 30 g/L cellobiose, experimental B5, predicted c u B6, predicted l B6, 40 g/L xylose, experimental G 10 0 B7, 80 g/L xylose, experimental B7, predicted</p><p>0 0 24 48 72 96 120 144 168 time (hr) 0 24Fig. A10.48 Validation72 of96 Model120 1 (strategy144 2).168 100 g/L Avicel hydrolyzed by Celluclast (10.5 mg- Time (hr) protein/g-substrate) with different initial inhibitor background. 100</p><p>90</p><p>80 ) L /</p><p> g 70 (</p><p> n o i 60 t a r t</p><p> n 50 e c n</p><p> o 40 C1 c</p><p> e C2</p><p> s 30 o C3 c u l 20 C4 G 100 C5 100 10 C6 90 90 0 C7</p><p>) 80 80 L / ) 0 24 48 72 96 120 144 168 g L ( / 70 g</p><p>70 n ( Time (g/L)</p><p> o i n t o</p><p> a 60 i 60 t r t a n r t</p><p> e 50 n 50 c e n c C1, predicted o C1, no inhibitor, experimental n</p><p>40 c 40 o C2, predicted c</p><p> e C2, 25 g/L glucose, experimental</p><p> s e C3, predicted 30 o 30 C3, 50 g/L glucose, experimental s c o u</p><p> c C4, predicted</p><p> l C4, 15 g/L cellobiose, experimental u 20 20 l G C5, 30 g/L cellobiose, experimental C5, predicted G 10 10 C6, 40 g/L xylose, experimental C6, predicted C7, 80 g/L xylose, experimental C7, predicted 0 0</p><p>0 24 48 0 72 24 96 48 120 72 144 96 168 120 144 168 Fig. A11. ValidationTime of (hr) Model 1 (strategyTime (hr) 2). 100 g/L Avicel hydrolyzed by Celluclast (21.1 mg- protein/g-substrate) with different initial inhibitor background. 90 90 80 90 80 70 80 ) L / 70 g 70 (</p><p>60 n</p><p> o 60 i</p><p> t 60</p><p> a 50 r t 50 n 50 e 40 c F mean</p><p> n 40 o 40 F, predicted G mean c</p><p>30 F, predicted</p><p> e G, predicted H mean</p><p> s G, predicted 30 30 o H, predicted c 20 H, predicted u l F 20 20 G 10 F, Cel / N188 = 15.8 F, Cel / 3, / N188experimental = 15.8 / 3, experimental G 10 10 G, Cel / N188 = 15.8 G, Cel / 1, / N188experimental = 15.8 / 1, experimental H 0 H, Cel / N188 = 31.6 H, Cel / 5.9, / N188 experimental = 31.6 / 5.9, experimental 0 0 0 24 48 72 96 120 144 168 0 24 480 7224 9648 12072 14496 168120 144 168 Time (hr)</p><p>Fig. A12. Validation of Model 1 (strategy 2). 100 g/L Avicel hydrolyzed by different ratio of Celluclast/N188 loading with initial 40 g/L xylose background. 130 120 110</p><p>) 100 L / g</p><p>( 90</p><p> n o</p><p> i 80 t a r 130 t 70 140 n e</p><p>120 c 60</p><p>130 n o</p><p> c 50</p><p>120 110 e s ) 100 40</p><p>) 110 o L / c L / g u 30 I, 150 g/L, experimental l g 100 ( 90</p><p>(</p><p>G n J, 50 g/L, experimental n</p><p>90 o 20 i</p><p> o 80 i t t a a 80 r 10 r t 70 I, prediction I, predicted t n n</p><p>70 e J, predicted</p><p> e 0 J, prediction</p><p> c 60 c n n 60 o o</p><p> c 50 0 24 48 72 96 120 144 168 I c</p><p>50 e e</p><p> s J</p><p> s 40 Time (hr) o</p><p> o 40 c c</p><p> u 30 u l l 30 I G G 20 20 I, 150 g/L, experimental J 10 10 J, 50 g/L, experimental 0 0</p><p>0 024 2448 4872 7296 96120 120144 144168 168 Time (hr)Time (hr)</p><p>Fig. A13. Validation of Model 1 (strategy 2). 50 and 150 g/L Avicel hydrolyzed by Celluclast (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate).</p><p>100</p><p>90</p><p>80 ) L</p><p>/ 70 g (</p><p> n 60 o i t a r</p><p> t 50 n e c</p><p> n 40 o c</p><p>N</p><p> e 30</p><p> s O o</p><p> c P</p><p> u 20 l</p><p>G Q 10</p><p>0</p><p>0 24 48 72 96 120 144 168 Time (hr) 100</p><p>90</p><p>80 ) L / 70 g (</p><p> n 60 o i t a r</p><p> t 50 n e c</p><p> n 40 o c 190 </p><p> e 30</p><p>180 s o 170 c 20 N, no inhibitor, experimental N, no inhibitor, experimental u N, predicted 160 l</p><p>G O, 50 g/L glucose, experimental O, predicted O, 50 g/L glucose, experimental 150 10 140 P, 30 g/L cellobiose, experimental P, predicted P, 30 g/L cellobiose, experimental 130 0Q, 80 g/L xylose, experimental Q, predicted Q, 80 g/L xylose, experimental 120</p><p>) 110</p><p>L 0 24 48 72 96 120 144 168 /</p><p> g 100 ( 90 Time (hr) e</p><p> s 80 o</p><p>Fig. A14.c 70 Validation of Model 1 (strategy 2). 90 g/L Barley straw hydrolyzed by Celluclast (15.8 u l 60 G mg-protein/g-substrate)50 + N188 (5.9 mg-protein/g-substrate) with different N initial inhibitor 40 O background.30 20 P 10 Q 0 -10 -20 0 20 40 60 80 100 120 140 160 180 time (hr)</p><p>Appendix 5.4. Evaluation of Model 2 (Gcr,tetra = 75 g/L) 130 120 110</p><p>) 100 L / g (</p><p>90 n o i</p><p> t 80 a r t 70</p><p> n A1 e</p><p> c 60 A2 n</p><p> o A3 c 140 50</p><p> e A4 s 40 130 130 o c</p><p> u 120 120 l 30 A1 G 110 20 110 A2 )</p><p>L 100 100 ) / 10 A3 L g / (</p><p>90 90 g A4 ( n</p><p>0 o n i</p><p> t 80 80 o i a t r</p><p> t 0 24 48 72 96 120 144 168 70 a 70 r n t e n c 60 Time (hr)</p><p> e 60 n</p><p> c A1 o</p><p>50 n c</p><p>50 o A2 c e</p><p> s 40</p><p> e 40 A3 o s c A1, no inhibitor, experimental A1, fitted 30 o u A4 l c 30 A2, fitted u A2, 50 g/L glucose, experimental G 20 l</p><p>G 20 A3, 30 g/L cellobiose, experimental A3, fitted 10 10 A4, 80 g/L xylose, experimental A4, fitted 0 0 0 24 48 72 96 120 144 168 0 24 48 72 96 120 144 168 Time (hr) Fig. A15. Parameter estimation of Model 2 (Gcr,tetraTime = 75 (hr) g/L). 100 g/L Avicel hydrolyzed by Celluclast (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate) with different initial inhibitor background. 90</p><p>80</p><p>70 ) L /</p><p> g 60 (</p><p> n o i</p><p> t 50 a r t</p><p> n B1</p><p> e 40</p><p> c B2 n o</p><p> c 30 B3</p><p> e B4 s</p><p> o 20 c B5 u 90 l B6 G 10 B7 90 80 0 80 70 0 24 48 72 96 120 144 168 70 60 Time (hr) ) ) L / L / g 50</p><p>60 g (</p><p>( n e o i s t 50 40 o a c r t</p><p> u B1, predicted l</p><p> n B1, no inhibitor, experimental</p><p> e 30 40 G B2, predicted c B2, 25 g/L glucose, experimental n o B3, 50 g/L glucose, experimental B3, predicted c 30 20 B4, predicted e B4, 15 g/L cellobiose, experimental s o 20 10 B5, 30 g/L cellobiose, experimental B5, predicted c u l B6, 40 g/L xylose, experimental B6, predicted G 10 0 B7, 80 g/L xylose, experimental B7, predicted</p><p>0 0 24 48 72 96 120 144 168 time (hr) 0 24 48 72 96 120 144 168 Fig. A16. ValidationTime (hr) of Model 2 (Gcr,tetra = 75 g/L). 100 g/L Avicel hydrolyzed by Celluclast (10.5 mg-protein/g-substrate) with different initial inhibitor background. 100</p><p>90</p><p>80 ) L /</p><p> g 70 (</p><p> n o</p><p> i 60 t C1 a r t</p><p> n 50 C2 e</p><p> c C3 n 40 o C4 c</p><p> e C5</p><p> s 30</p><p> o C6 c u l 20 C7 G</p><p>100 10 100 90 0 90</p><p>) 80 0 24 48 72 96 120 144 168</p><p>80 L / ) g</p><p>L ( Time (hr) / 70 g</p><p>70 n (</p><p> o i n t 60 o a i 60 r t t a n r t</p><p> e 50</p><p> n 50 c e n c C1, predicted o C1, no inhibitor, experimental n 40 40 c o C2, predicted</p><p> c C2, 25 g/L glucose, experimental e</p><p> s e 30 C3, predicted 30 o C3, 50 g/L glucose, experimental s c o u c C4, 15 g/L cellobiose, experimental C4, predicted l u 20 l 20 G C5, 30 g/L cellobiose, experimental C5, predicted G 10 10 C6, 40 g/L xylose, experimental C6, predicted C7, 80 g/L xylose, experimental C7, predicted 0 0</p><p>0 24 480 7224 9648 12072 144 96 168 120 144 168 Fig. A17. Validation of Model 2 (Gcr,tetra = 75 g/L). 100 g/L Avicel hydrolyzed by Celluclast (21.1 Time (hr) Time (hr) mg-protein/g-substrate) with different initial inhibitor background. 90 90 80 8090</p><p>) 70 L</p><p>/ 80 g</p><p>) 70 (</p><p>L /</p><p> n 60</p><p> g 70 o ( i</p><p> t 60 n a r o</p><p> t 50 i</p><p> t 60 n</p><p> a 50 e r t c n n 4050 e o F c</p><p> c 40</p><p> n</p><p> e G o 3040 s c F, predicted F, predicted</p><p> o 30 H e c</p><p> s G, predicted</p><p> u G, predicted</p><p> l 2030 o c G 20 H, predicted H, predicted F mean u l 20 G 10 G mean F, Cel / N188 = 15.8 / 3, experimental 10 F, Cel / N188 = 15.8 / 3, experimental H mean 100 G,G, CelCel // N188N188 == 15.815.8 // 1,1, experimentalexperimental 0 H,H, CelCel // N188N188 == 31.631.6 // 5.9,5.9, experimentalexperimental 0 0 24 48 72 96 120 144 168 0 24 48 72 96 120 144 168 0 24 48 Time72 (hr)96 120 144 168 Time (hr)</p><p>Fig. A18. Validation of Model 2 (Gcr,tetra = 75 g/L). 100 g/L Avicel hydrolyzed by different ratio of Celluclast/N188 loading with initial 40 g/L xylose background. 130 120 110</p><p>) 100 L / g (</p><p>90 n o</p><p> i 80 130 t a r 120 t 70 130n e</p><p>110 c 60 120n o )</p><p>100 c 50</p><p>L</p><p>/ 110 e g s</p><p>( 90 40</p><p> o ) 100 n c L / o u</p><p> i 80 30 I, 150 g/L, experimental l t g</p><p>( 90 a</p><p>G</p><p> r J, 50 g/L, experimental t 70 n 20 n o</p><p> i 80 e t</p><p> c 60 a 10 I, predicted r n t 70 I, prediction I o n</p><p> c 50 0 J, predicted</p><p> e J, prediction J c e 60 s 40 n o o 0 24 48 72 96 120 144 168 c</p><p> c 50</p><p>I u 30 l e Time (hr) s G 40 J</p><p>20 o c</p><p> u 30 10 l G 0 20 I, 150 g/L, experimental 10 J, 50 g/L, experimental 0 24 48 72 96 120 144 168 0 Time (hr) 0 24 48 72 96 120 144 168 Time (hr)</p><p>Fig. A19. Validation of Model 2 (Gcr,tetra = 75 g/L). 50 and 150 g/L Avicel hydrolyzed by Celluclast (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate). 90</p><p>80</p><p>70 ) L / g (</p><p>60 n o i t</p><p> a 50 r t n e</p><p> c 40 100 n</p><p> o N c 30 90</p><p> e O s</p><p> o P c 20 80 u</p><p> l Q ) G L / 70</p><p>10g (</p><p>N n 60 o O i</p><p>0t a</p><p> r P t 50 n Q e 0 24 48 72 96 120 144 168 c</p><p> n 40</p><p> o Time (hr) c 190 </p><p> e 30</p><p>180 s o 170 c 20 N, no inhibitor, experimental N, no inhibitor, experimental u N, predicted 160 l</p><p>G O, 50 g/L glucose, experimental O, predicted O, 50 g/L glucose, experimental 150 10 140 P, 30 g/L cellobiose, experimental P, predicted P, 30 g/L cellobiose, experimental 130 0 Q, 80 g/L xylose, experimental Q, predicted Q, 80 g/L xylose, experimental 120</p><p>) 110</p><p>L 0 24 48 72 96 120 144 168 / 100 g ( 90 Time (hr)</p><p>Fig. e A20. Validation of Model 2 (Gcr,tetra = 75 g/L). 90 g/L Barley straw hydrolyzed by Celluclast </p><p> s 80 o</p><p> c 70</p><p>(15.8u mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate) with different initial inhibitor l 60 G background.50 N 40 O 30 20 P 10 Q 0 -10 -20 0 20 40 60 80 100 120 140 160 180 time (hr) Appendix 5.5. Evaluation of Model 2 (Gcr,tetra = 80 g/L)</p><p>130 120 110</p><p>) 100 L /</p><p> g 90 (</p><p> n</p><p> o 80 i</p><p> t A1 a r</p><p> t 70 A2 n</p><p> e 60 A3 c</p><p> n A4 o 50 c</p><p>140 e s 40</p><p> o 130 A1 130 c 30 u</p><p> l A2 120 120 G 20 A3 110 110 A4</p><p>) 10</p><p>L 100 / 100 ) g L 0 ( / 90 90 g n ( o i</p><p> n 0 24 48 72 96 120 144 168 t 80 80 o a i r t t</p><p>70 a Time (hr)</p><p> n 70 r t e n c 60</p><p> e 60 n c</p><p> o A1 n</p><p> c 50</p><p>50 o A2 e c</p><p> s 40 e</p><p> o 40 A3 s c A1, no inhibitor, experimental A1, fitted</p><p>30 o u A4 l c 30 A2, fitted</p><p> u A2, 50 g/L glucose, experimental G 20 l</p><p>G 20 A3, 30 g/L cellobiose, experimental A3, fitted 10 10 A4, 80 g/L xylose, experimental A4, fitted 0 0 0 24 48 72 96 120 144 168 0 24 48 72 96 120 144 168 Time (hr) Fig. A21. Parameter estimation of Model 2 (Gcr,tetraTime = 80 (hr) g/L). 100 g/L Avicel hydrolyzed by Celluclast (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate) with different initial inhibitor background. 90</p><p>80</p><p>70 ) L / g (</p><p>60 n o i t</p><p> a 50</p><p> r B1 t n</p><p> e B2</p><p> c 40</p><p> n B3 o c 30 B4 e</p><p> s B5 o</p><p> c 20 B6 u l</p><p>G B7 90 10</p><p>90 80 0</p><p>80 70 0 24 48 72 96 120 144 168</p><p>70 60 Time (hr) ) ) L L / / g 50</p><p>60 g ( (</p><p> n e o s i t 50 40 o a c r t</p><p> u B1, predicted l</p><p> n B1, no inhibitor, experimental 30 e 40 G B2, predicted c B2, 25 g/L glucose, experimental n B3, predicted o B3, 50 g/L glucose, experimental c 30 20 B4, predicted e B4, 15 g/L cellobiose, experimental s o 20 10 B5, 30 g/L cellobiose, experimental B5, predicted c u B6, predicted l B6, 40 g/L xylose, experimental G 10 0 B7, 80 g/L xylose, experimental B7, predicted</p><p>0 0 24 48 72 96 120 144 168 time (hr) 0 24 48 72 96 120 144 168 Fig. A22. ValidationTime (hr)of Model 2 (Gcr,tetra = 80 g/L). 100 g/L Avicel hydrolyzed by Celluclast (10.5 mg-protein/g-substrate) with different initial inhibitor background.</p><p>100</p><p>90</p><p>80 ) L /</p><p> g C1 ( 70</p><p> n C2 o i t 60 C3 a r t</p><p> n 50 C4 e</p><p> c C5 n</p><p> o 40 C6 c</p><p> e C7 s 30 o c u l 20 C1 G C2 10 C3 100 100 C4 0 90 90 C5 0 24 48 72 96 120 144 168 C6 80 ) 80</p><p>L C7 ) / L g Time (hr) / (</p><p>70 g 70 ( n</p><p> o i n t o 60 i</p><p>60 a t r t a r n t</p><p>50 e 50 n c e n c C1, predicted o C1, no inhibitor, experimental n 40 40 c o C2, predicted e</p><p> c C2, 25 g/L glucose, experimental</p><p> s</p><p> e 30 C3, predicted 30 o C3, 50 g/L glucose, experimental s c o u C4, predicted l c C4, 15 g/L cellobiose, experimental 20 u 20 G l C5, 30 g/L cellobiose, experimental C5, predicted G C6, predicted 10 10 C6, 40 g/L xylose, experimental C7, 80 g/L xylose, experimental C7, predicted 0 0</p><p>0 24 48 0 72 24 96 48 120 72 144 96 168 120 144 168 Fig. A23. Validation of Model 2 (Gcr,tetra = 80 g/L). 100 g/L Avicel hydrolyzed by Celluclast (21.1 Time (hr) Time (hr) mg-protein/g-substrate) with different initial inhibitor background. 90 9090 80 8080</p><p>) 70 L /</p><p> g 7070 ) (</p><p>L /</p><p> n 60 g o ( i</p><p>60</p><p> t 60 n a r o t 50i F t n</p><p> a 5050 e r G t c n</p><p> n 40</p><p> e H o 40 c 40 c F, predicted</p><p> n</p><p> e 30o c s G, predicted F, predicted 30 F o 30 e c H, predicted G, predicted s G u</p><p> l 20o</p><p> c 20 H, predicted G 20 H u l F, Cel / N188 = 15.8 / 3, experimental 10G F, Cel / N188 = 15.8 / 3, experimental 1010 G, Cel / N188 = 15.8 / 1, experimental H,G, Cel Cel / / N188N188 == 31.615.8 // 5.9,1, experimental experimental 00 0 H, Cel / N188 = 31.6 / 5.9, experimental</p><p>00 2424 4848 7272 9696 120120 144144 168 0 24 48 72 96 120 144 168 Time (hr) Time (hr)</p><p>Fig. A24. Validation of Model 2 (Gcr,tetra = 80 g/L). 100 g/L Avicel hydrolyzed by different ratio of Celluclast/N188 loading with initial 40 g/L xylose background.</p><p>130 120 110 100 ) L /</p><p> g 90 (</p><p> n 80 o i t a</p><p> r 70 I, prediction t n</p><p> e 60 J, prediction c n</p><p> o 50 c</p><p> e</p><p> s 40 o c</p><p> u 30 l G 20 I, 150 g/L, experimental 10 J, 50 g/L, experimental 0</p><p>0 24 48 72 96 120 144 168 Time (hr) 130 120</p><p>130 110</p><p>) 100 L</p><p>120 / g ( 110 90 n o</p><p> i 80 t ) 100 a L / r t 70 g n ( 90</p><p> e n c 60 o n</p><p> i 80 t o a</p><p> c 50 r</p><p> t 70 e n s</p><p> e 40 o</p><p> c 60</p><p> c I n</p><p> u 30 I, 150 g/L, experimental o 50 l c J G J, 50 g/L, experimental</p><p> e 20</p><p> s 40 o</p><p> c 10 I, predicted I</p><p> u 30 l J, predicted J</p><p>G 0 20 10 0 24 48 72 96 120 144 168 0 Time (hr)</p><p>0 24 48 72 96 120 144 168 Time (hr)</p><p>Fig. A25. Validation of Model 2 (Gcr,tetra = 80 g/L). 50 and 150 g/L Avicel hydrolyzed by Celluclast (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate). 90</p><p>80</p><p>) 70 L / g ( 60 n o i t a</p><p> r 50 t n e</p><p> c N 40 n</p><p> o O c</p><p> e P 30 100 s</p><p> o Q c</p><p> u 90</p><p> l 20</p><p>G N 80 10 O )</p><p>L P / 70 g</p><p>0 ( Q</p><p> n 60 o i t</p><p>0 a 24 48 72 96 120 144 168 r</p><p> t 50 n</p><p> e Time (hr) c 40 n o c 190 </p><p> e 30</p><p>180 s o 170 c 20 N, no inhibitor, experimental u N, no inhibitor, experimental N, predicted 160 l G O, 50 g/L glucose, experimental O, predicted O, 50 g/L glucose, experimental 150 10 P, 30 g/L cellobiose, experimental 140 P, 30 g/L cellobiose, experimental P, predicted 130 Q,0 80 g/L xylose, experimental Q, predicted Q, 80 g/L xylose, experimental 120</p><p>) 110 0 24 48 72 96 120 144 168 L / 100 g</p><p>( Time (hr) Fig. A26. 90 Parameter estimation of Model 2 (Gcr,tetra = 80 g/L). 100 g/L Avicel hydrolyzed by e</p><p> s 80 o</p><p>Celluclastc 70 (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate) with different initial u l 60 G inhibitor 50background. N 40 O 30 20 P 10 Q 0 -10 -20 0 20 40 60 80 100 120 140 160 180 time (hr) Appendix 5.6. Evaluation of Model 3 (Gcr,tetra = 75 g/L)</p><p>120 110 100</p><p>) 90 L / g</p><p>( 80</p><p> n o</p><p> i 70 t a r t 60 n e</p><p> c 50 A1 n</p><p> o A2 c</p><p>40</p><p> e A3 s</p><p> o 30 A4 c u l 20 140 I G 10 130 120 0 110 ) L</p><p>0 / 10024 48 72 96 120 144 168 g ( 90</p><p> n Time (hr) o i</p><p> t 80 a r t 70 n e</p><p> c 60 n o</p><p> c 50</p><p>A1, no inhibitor,e 100 g/L Avicel, experimental A1, fitted s 40 A1, no inhibitor, 100 g/L Avicel, experimental o</p><p> c A2, fitted A2, 50 g/L glucose,30 100 g/L Avicel, experimental A2, 50 g/L glucose, 100 g/L Avicel, experimental u 140 A3, 30 g/Ll cellobiose, 100 g/L Avicel, experimental A3, fitted A3, 30 g/L cellobiose, 100 g/L Avicel, experimental G 20 A1 130 A4, 80 g/L xylose, 100 g/L Avicel, experimental A4, fitted A4, 80 g/L, xylose, 100 g/L Avicel, experimental 10 A2 120 I, no inhibitor, 150 g/L Avicel, experimental I, fitted I, no inhibitor, 150 g/L Avicel, experimental 0 A3 110 A4 100 0 24 48 72 96 120 I144 168 90 Time (hr) )</p><p>L 80 Fig. / A27. Parameter estimation of Model 3 (Gcr,tetra = 75 g/L). 100 and 150 g/L Avicel hydrolyzed by g (</p><p>70 e</p><p>Celluclasts 60 (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate) with different initial o c</p><p> u 50 inhibitorl background. G 40 30 20 10 0</p><p>0 24 48 72 96 120 144 168 time (hr) 90</p><p>80</p><p>) 70 L / g ( 60 B1 n o</p><p> i B2 t a</p><p> r 50 B3 t n</p><p> e B4</p><p> c 40</p><p> n B5 o c</p><p>B6</p><p> e 30</p><p> s B7 o c</p><p> u 20 l B1 90 G 10 B2 B3 90 80 0 B4 B5 80 70 0 24 48 72 96 120 144 168 B6 70 60 Time (hr) B7 ) ) L / L / g</p><p>( 60 50 g</p><p>( n e o i s t 50 40 o a r c t</p><p> u B1, predicted l n B1, no inhibitor, experimental</p><p> e 40 30 G c B2, 25 g/L glucose, experimental B2, predicted n o B3, 50 g/L glucose, experimental B3, predicted c 30 20</p><p> e B4, 15 g/L cellobiose, experimental B4, predicted s o 20 10 B5, 30 g/L cellobiose, experimental B5, predicted c u l B6, 40 g/L xylose, experimental B6, predicted G 10 0 B7, 80 g/L xylose, experimental B7, predicted</p><p>0 0 24 48 72 96 120 144 168</p><p>0 24 48 72 96 120 time144 (hr) 168</p><p>Fig. A28. ValidationTime of (hr) Model 3 (Gcr,tetra = 75 g/L). 100 g/L Avicel hydrolyzed by Celluclast (10.5 mg-protein/g-substrate) with different initial inhibitor background. 100</p><p>90</p><p>) 80 L / g (</p><p>70 n o i t 60 C1 a r</p><p> t C2 n</p><p> e 50 C3 c</p><p> n C4 o</p><p> c 40 C5 e s</p><p> o 30 C6 c</p><p> u C7 l</p><p>G 20</p><p>10 100 100 0 90 90 0 24 48 72 96 120 144 168 80 ) 80 ) L / L / g Time (hr) (</p><p> g 70 70 (</p><p> n n o i t o i 60 60 a t r a t r n t</p><p>50 e n 50 c e n c C1, no inhibitor, experimental C1, predicted o n 40 40 c o C2, predicted c C2, 25 g/L glucose, experimental e</p><p> s e 30 30 C3, predicted</p><p> o C3, 50 g/L glucose, experimental s c o u c C4, 15 g/L cellobiose, experimental C4, predicted l u 20 20 l G C5, 30 g/L cellobiose, experimental C5, predicted G 10 10 C6, 40 g/L xylose, experimental C6, predicted C7, 80 g/L xylose, experimental C7, predicted 0 0</p><p>0 24 48 0 72 24 96 48 120 72 144 96 168 120 144 168 Fig. A29. ValidationTime (hr) of Model 3 (GTimecr,tetra (hr) = 75 g/L). 100 g/L Avicel hydrolyzed by Celluclast (21.1 mg-protein/g-substrate) with different initial inhibitor background. 9090</p><p>8080 90</p><p>) 70 ) 70 L / L 80 / g g (</p><p>( 60</p><p> n 60</p><p> n 70 o i o t i t a 50 r a t r 5060 t n n e e c 40 c n 4050 n o o c F, predicted</p><p>F c 30 e</p><p> s 40 G, predicted e 30 G</p><p> o F, predicted s c o 20 H, predicted H u c G, predicted l 30 u 20 l G F, Cel / N188 H, = predicted 15.8 / 3, experimental G 10 1020 G, Cel / N188 = 15.8 / 1, experimental F F, Cel / N188 = 15.8 / 3, experimental 0 H, Cel / N188 = 31.6 / 5.9, experimental G 010 G, Cel / N188 = 15.8 / 1, experimental H 0 24 H,48 Cel / N18872 = 31.696 / 5.9,120 experimental144 168 0 0 24 48 72 96 120 144 168 Time (hr) 0 24 48 Time72 (hr)96 120 144 168</p><p>Fig. A30. Validation of Model 3 (Gcr,tetra = 75 g/L). 100 g/L Avicel hydrolyzed by different ratio of Celluclast/N188 loading with initial 40 g/L xylose background.</p><p>130 120 110 130 100 120 ) L / 90</p><p> g 110</p><p>( J, 50 g/L, experimental</p><p> n 80 100 o ) i</p><p> t J, predicted L / a 70</p><p> r 90 g t ( n e 60 n 80 c o i n 50 t o a 70 r c</p><p> t J</p><p> n e 40</p><p> e 60 s c o c 30 n 50 u</p><p> o J l c</p><p>G 20</p><p> e 40 s</p><p>10 o</p><p> c 30 u 0 l</p><p>G 20 0 1024 48 72 96 120 144 168 0 Time (hr)</p><p>0 24 48 72 96 120 144 168 Time (hr) Fig. A31. Validation of Model 3 (Gcr,tetra = 75 g/L). 50 g/L Avicel hydrolyzed by Celluclast (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate). 90</p><p>80</p><p>) 70 L / g ( 60 n o i t a</p><p> r 50 t n e</p><p> c 40 n o c</p><p> e 30</p><p> s 100 o c</p><p> u 20 l 90 G 10 80 ) L</p><p>/ 70</p><p>0 g (</p><p> n 60 o i 0 t 24 48 72 96 120 144 168 a r</p><p> t 50 n Time (hr) e c</p><p> n 40 o c 190 </p><p> e 30 180 s o 170 c 20 N, no inhibitor, experimental u N, no inhibitor, experimental N, predicted 160 l G O, 50 g/L glucose, experimental O, predicted O, 50 g/L glucose, experimental 150 10 P, 30 g/L cellobiose, experimental P, predicted P, 30 g/L cellobiose, experimental 140 Q, 80 g/L xylose, experimental 130 Q,0 80 g/L xylose, experimental Q, predicted 120</p><p>) 110 0 24 48 72 96 120 144 168 L /</p><p> g 100</p><p>( Time (hr) 90 Fig. A32.e Parameter estimation of Model 3 (Gcr,tetra = 75 g/L). 100 g/L Avicel hydrolyzed by s 80 o</p><p> c 70 u Celluclastl 60 (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate) with different initial G 50 N inhibitor40 background. 30 O 20 P 10 Q 0 -10 -20 0 20 40 60 80 100 120 140 160 180 time (hr) Appendix 5.7. Evaluation of Model 3 (Gcr,tetra = 80 g/L)</p><p>120</p><p>110</p><p>100 )</p><p>L 90 / g ( 80 n o i t 70 a r t</p><p> n 60 e c</p><p> n 50 o c</p><p> e 40 s o</p><p> c 30 u l 140 G 20 130 10 120 0 110 ) L</p><p>/ 100 g</p><p>0 ( 24 48 72 96 120 144 168 90 n o i</p><p> t 80 Time (hr) a r t 70 n e</p><p> c 60 n o</p><p> c 50</p><p> e A1, fitted A1, no inhibitor,s 40 100 g/L Avicel, experimental A1, no inhibitor, 100 g/L Avicel, experimental o</p><p> c A2, fitted A2, 50 g/L glucose,30 100 g/L Avicel, experimental A2, 50 g/L glucose, 100 g/L Avicel, experimental u 140 A3, 30 g/L cellobiose,l 100 g/L Avicel, experimental A3, fitted A3, 30 g/L cellobiose, 100 g/L Avicel, experimental G 20 A1 130 A4, 80 g/L xylose, 100 g/L Avicel, experimental A4, fitted A4, 80 g/L, xylose, 100 g/L Avicel, experimental 10 A2 120 I, no inhibitor, 150 g/L Avicel, experimental I, fitted I, no inhibitor, 150 g/L Avicel, experimental 0 A3 110 A4 100 0 24 48 72 96 120 I144 168 90 Time (hr)</p><p>Fig. ) A33. Parameter estimation of Model 3 (Gcr,tetra = 80 g/L). 100 and 150 g/L Avicel hydrolyzed by</p><p>L 80 / g ( Celluclast 70 (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate) with different initial e</p><p> s 60 o inhibitorc background.</p><p> u 50 l</p><p>G 40 30 20 10 0</p><p>0 24 48 72 96 120 144 168 time (hr) 90</p><p>80</p><p>) 70 L / g ( 60 n o i t a</p><p> r 50 B1 t</p><p> n B2 e</p><p> c 40</p><p> n B3 o c</p><p>B4</p><p> e 30</p><p> s B5 o</p><p> c B6</p><p> u 20 l</p><p>90 G B7 10 90 80 0 80 70 0 24 48 72 96 120 144 168 70 60 )</p><p>) Time (hr) L L / / g 50</p><p>60 g ( (</p><p> n e o s i t 50 40 o a c r t</p><p> u B1, predicted l</p><p> n B1, no inhibitor, experimental</p><p> e 30 40 G B2, predicted c B2, 25 g/L glucose, experimental n o B3, 50 g/L glucose, experimental B3, predicted c 30 20 B4, predicted e B4, 15 g/L cellobiose, experimental s o 20 10 B5, 30 g/L cellobiose, experimental B5, predicted c u l B6, 40 g/L xylose, experimental B6, predicted G 10 0 B7, 80 g/L xylose, experimental B7, predicted</p><p>0 0 24 48 72 96 120 144 168 Fig. A34. Validation of Model 3 (Gcr,tetra = 80 g/L). 100 g/L Avicel hydrolyzed by Celluclast (10.5 time (hr) 0 mg-protein/g-substrate)24 48 72 with96 different120 initial144 inhibitor168 background. Time (hr) 100</p><p>90</p><p>80 ) L</p><p>/ C1 g</p><p>( 70</p><p>C2 n o</p><p> i C3</p><p> t 60 a</p><p> r C4 t</p><p> n 50 C5 e c</p><p> n C6</p><p> o 40</p><p> c C7</p><p> e</p><p> s 30 o</p><p> c C1 u l 20</p><p>G C2 100 100 10 C3 C4 90 90 0 C5</p><p>80 ) 80 C6 L /</p><p>) 0 24 48 72 96 120 144 168</p><p> g C7 L / (</p><p>70</p><p> g 70 n</p><p>( Time (hr)</p><p> o i n t</p><p> o 60 a i 60 t r t a n r t 50 e 50 n c e n c C1, predicted o C1, no inhibitor, experimental n 40 40 c o C2, predicted e c C2, 25 g/L glucose, experimental</p><p> s e 30 C3, predicted 30 o C3, 50 g/L glucose, experimental s c o</p><p> u C4, predicted l c C4, 15 g/L cellobiose, experimental</p><p> u 20</p><p>20 G l C5, 30 g/L cellobiose, experimental C5, predicted G 10 10 C6, 40 g/L xylose, experimental C6, predicted C7, 80 g/L xylose, experimental C7, predicted 0 0</p><p>0 24 48 0 72 24 96 48 120 72 144 96 168 120 144 168 Time (hr) Time (hr) Fig. A35. Validation of Model 3 (Gcr,tetra = 80 g/L). 100 g/L Avicel hydrolyzed by Celluclast (21.1 mg-protein/g-substrate) with different initial inhibitor background. 9090 90 8080 80</p><p>) 70</p><p>L 70 / ) 70 g L ( / 60 g n (</p><p>60 o</p><p> i 60 n t o a</p><p> i 50 r t t</p><p> a 50 F n</p><p> r 50 t e n c 40 G e n</p><p> c 40 o 40 H c n F, predicted F, predicted</p><p> o 30 e c</p><p> s G, predicted G, predicted 3030 o e c s 20 H, predicted H, predicted u o l c</p><p>G 2020 F u</p><p> l F, Cel / N188 = 15.8 / 3, experimental 10 F, Cel / N188 = 15.8 / 3, experimental G G, Cel / N188 = 15.8 / 1, experimental G 1010 G, Cel / N188 = 15.8 / 1, experimental H, Cel / N188 = 31.6 / 5.9, experimental H 0 H, Cel / N188 = 31.6 / 5.9, experimental 00 0 24 48 72 96 120 144 168 0 24 48 72 96 120 144 168 0 24 48 Time72 (hr)96 120 144 168 Time (hr)</p><p>Fig. A36. Validation of Model 3 (Gcr,tetra = 80 g/L). 100 g/L Avicel hydrolyzed by different ratio of Celluclast/N188 loading with initial 40 g/L xylose background.</p><p>130 120 110 130 100 120 ) L / 90 110</p><p> g J, 50 g/L, experimental (</p><p> n 100</p><p>80 )</p><p> o J, predicted i L t /</p><p> a 90 70 g r ( t</p><p> n n 80</p><p> e 60 J, 50 g/L, experimental o i c t n 50 a 70 r o t</p><p> c J, predicted</p><p> n e</p><p>40 e 60 s c o n</p><p> c 30 50 o u c l</p><p>G 20 e 40 s o</p><p>10 c 30 u 0 l G 20 0 10 24 48 72 96 120 144 168 0 Time (hr) 0 24 48 72 96 120 144 168 Time (hr) Fig. A37. Validation of Model 3 (Gcr,tetra = 80 g/L). 50 g/L Avicel hydrolyzed by Celluclast (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate).</p><p>90</p><p>80</p><p>) 70 L / g (</p><p> n 60 o o i t</p><p> a 50 r t n e</p><p> c 40 100 n N o c 30 90 O e s</p><p> o P 80 c 20 u Q ) l L / G 70 g</p><p>10 (</p><p> n N</p><p> o 60 i 0 t O a r t 50</p><p> n P e</p><p> c 0 24 48 72 96 120 144 168 Q</p><p> n 40 o</p><p> c Time (hr) 190 </p><p> e 30</p><p>180 s o 170 c N, no inhibitor, experimental N, no inhibitor, experimental u 20 N, predicted 160 l</p><p>G O, 50 g/L glucose, experimental O, predicted O, 50 g/L glucose, experimental 150 10 140 P, 30 g/L cellobiose, experimental P, predicted P, 30 g/L cellobiose, experimental Q, 80 g/L xylose, experimental 130 0 Q, predicted Q, 80 g/L xylose, experimental 120</p><p>) 110 L</p><p>/ 0 24 48 72 96 120 144 168</p><p> g 100 ( 90 Time (hr) e</p><p> s 80 o</p><p> c 70 u l 60</p><p>Fig. A38.G Parameter estimation of Model 3 (Gcr,tetra = 80 g/L). 100 g/L Avicel hydrolyzed by 50 N Celluclast40 (15.8 mg-protein/g-substrate) + N188 (5.9 mg-protein/g-substrate) O with different initial 30 P inhibitor20 background. 10 Q 0 -10 -20 0 20 40 60 80 100 120 140 160 180 time (hr) Appendix 5.8. Comparison of hydrolysis kinetics of Avicel by N188 and Xbg</p><p>90</p><p>80</p><p>) 70 L / g ( 60 n o i t</p><p> a 50 r t n e</p><p> c 40 n o c</p><p> e 30</p><p> s G, Fitted o c</p><p> u 20 l G, N188 + Cel, experimental G 10 K, Xbg + Cel, experimental</p><p>0</p><p>0 24 48 72 96 120 144 168 Time (hr)</p><p>Fig. A39. 100 g/L Avicel hydrolyzed by Celluclast (15.8 mg-protein/g-substrate) + BG (N188 or Xbg, 1 mg-protein/g-substrate) with initial 40 g/L xylose background. The dashed line is prediction of data set G by Model 2 (Gcr,tetra = 75 g/L). Appendix 5.9.Transglycosylation assay</p><p>20</p><p>) 18 L / g ( 16 n Xbg, 0.585 g/L o i t 14 Xbg, 0.293 g/L a r t</p><p> n 12 e c n</p><p> o 10 c</p><p> e 8 s o c</p><p> u 6 l g</p><p> d 4 e s</p><p> a 2 e r c</p><p> e 0 D 0 20 40 60 80 100 120 140 160 180 Glucose concentration (g/L) 20 )</p><p>L 18 / g ( 16 n</p><p> o N188, 0.585 g/L i t</p><p> a 14 N188, 0.293 g/L r t n</p><p> e 12 c n</p><p> o 10 c</p><p> e</p><p> s 8 o c u</p><p> l 6 g</p><p> d 4 e s a</p><p> e 2 r c</p><p> e 0 D 0 20 40 60 80 100 120 140 160 180 Glucose concentration (g/L)</p><p>20 ) L</p><p>/ 18 g (</p><p> n 16 o i t</p><p> a 14 r</p><p> t Cel, 1.58 g/L n</p><p> e 12 Cel, 0.585 g/L c n o</p><p> c 10</p><p> e</p><p> s 8 o c u l 6 g</p><p> d</p><p> e 4 s a e</p><p> r 2 c e</p><p>D 0</p><p>0 20 40 60 80 100 120 140 160 180 Fig. A40. Glucose concentration (g/L) Transglycosylation assay</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    44 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us