I Think, Therefore I Exist

I Think, Therefore I Exist

<p> Chapter 3 Part 2: Coordinate Systems</p><p>I think, therefore I exist.</p><p> Introduction . Orthogonal coordinate systems: Axes are mutually perpendicular (dot products are zero). . Nonorthogonal coordinate systems are seldom used. . A complex problem can be greatly simplified when it is formulated in an appropriate coordinate system because of symmetry (One or more variables are constant). . Common coordinate systems: o Rectangular (Cartesian) o Cylindrical o Spherical  Cartesian coordinate system (x, y, z) . It was introduced by the famous 16th century French philosopher Rene Descartes (Cartesian). . The axes are independent of the vector being measured. </p><p>. Differential length: dl  xˆ dx  yˆ dy  zˆ dz . Differential surface:</p><p> ds x  xˆ dy dz</p><p> ds y  yˆ dxdz</p><p> ds z  zˆ dxdy . Differential volume: dv  dxdy dz  Cylindrical coordinate system (r, , z) . r – Radial distance in the x-y plane (0 , )  – Azimuth angle measured from the x-axis (0 , 2) z – z-axis (- , ) . Only the z-axis is independent of the vector being measured. </p><p>. Orthogonal relationship: rˆ ˆ  zˆ ˆ zˆ  rˆ zˆ rˆ  ˆ rˆ rˆ 1 ˆˆ 1 zˆ zˆ 1 rˆ rˆ  0 ˆˆ  0 zˆ zˆ  0</p><p>. Differential elements: dlr = dr, dl = r d, dlz = dz. . Differential length: dl  rˆ dr  ˆ r d  zˆ dz . Differential surface:</p><p> dsr  rˆ r d dz ˆ ds   dr dz</p><p> ds z  zˆ r d dr . Differential volume: dv  r dr d dz  Spherical coordinate system (R, , ) . R – Radial distance from the origin (0 , )  – Zenith angle measured from the z-axis (0 , )  – Azimuth angle measured from the x-axis (0 , 2) . The axes are dependent of the vector being measured. . Orthogonal relationship: Rˆ ˆ  ˆ ˆ ˆ  Rˆ ˆ  Rˆ  ˆ Rˆ  Rˆ  1 ˆ ˆ  1 ˆ ˆ  1 Rˆ  Rˆ  0 ˆ ˆ  0 ˆ ˆ  0 . Differential elements: . dlR = dR, </p><p>. dl = R d, </p><p>. dl = R sin  d ˆ ˆ ˆ . Differential length: dl  R dlR  R d  Rsin dl . Differential surface: ˆ 2 ds R  R R sin d d ˆ ds  Rsin dR d ˆ ds   R dRd . Differential volume: dv  R2 sin dR d d  Coordinate system transformation: Caution – The sign of tan-1:  = tan-1(b/a) if a > 0  = 180 + tan-1(b/a) if a < 0 MatLab commands: . Rectangular to spherical: [th,phi,R]=cart2sph(x,y,z) EDU» [th,phi,R]=cart2sph(1,2,3) th = 1.1071 phi = 0.9303 R = 3.7417 . Spherical to rectangular: [x,y,z]=sph2cart(th,phi,R) EDU» [x,y,z]=sph2cart(1,2,3) x = -0.6745 y = -1.0505 z = 2.7279 . Rectangular to cylindrical: [phi,r,z]=cart2pol(x,y,z) EDU» [phi,r,z]=cart2pol(1,2,3) phi = 1.1071 r = 2.2361 z = 3 . Cylindrical to rectangular: [x,y,z]=pol2cart(th,r,z) EDU» [x,y,z]=pol2cart(1,2,3) x = 1.0806 y = 1.6829 z = 3  Distance between two points: 2 2 2 . Rectangular: d  x2  x1   y2  y1   z2  z1  2 2 2 . Cylindrical: d  r2  r1  2r2r1 cos(2  1)  z2  z1  2 2 . Spherical: d  R2  R1  2R2 R1cos 2 cos1  sin 2 sin1 cos(2 1 )</p><p>. Example:x1  1 y1  2 z1  3 x2  4 y2  5 z2  6</p><p>2 2 2 2 r1  x1  y1 r1  2.236 r2  x2  y2 r2  6.403</p><p> y1   y2  1  atan  1  63.435 deg 2  atan  2  51.34 deg  x1   x2  2 2 2 2 2 2 R1  x1  y1  z1 R1  3.742 R2  x2  y2  z2 R2  8.775</p><p> 2 2   2 2   x1  y1   x2  y2  1  atan  1  36.699 deg 2  atan  2  46.862 deg  z1   z2 </p><p>2 2 2 x2  x1  y2  y1  z2  z1  5.196</p><p>2 2 2 r2  r1  2r1r2cos2  1  z2  z1  5.196</p><p>2 2 R2  R1  2R1R2cos2cos1  sin1sin2cos2  1  5.196</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us