Flood Inundation Modelling Model Choice and Proper Application

Flood Inundation Modelling Model Choice and Proper Application

<p>Integrated Flood Risk Analysis and Management Methodologies </p><p>FLOOD INUNDATION MODELLING </p><p>MODEL CHOICE AND PROPER APPLICATION </p><p></p><ul style="display: flex;"><li style="flex:1">Date </li><li style="flex:1">February 2009 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Report Number </li><li style="flex:1">T08-09-03 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Revision Number </li><li style="flex:1">3_3_P01 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Task Leader </li><li style="flex:1">Deltares | Delft Hydraulics (Delft) </li></ul><p></p><p>FLOODsite is co-funded by the European Community <br>Sixth Framework Programme for European Research and Technological Development (2002-2006) <br>FLOODsite is an Integrated Project&nbsp;in the Global Change and Eco-systems Sub-Priority <br>Start date March 2004, duration 5 Years <br>Document Dissemination Level PU </p><p>PP </p><p></p><ul style="display: flex;"><li style="flex:1">Public </li><li style="flex:1">PU </li></ul><p></p><p>Restricted to other programme participants (including the Commission Services) Restricted to a group specified by the consortium (including the Commission Services) Confidential, only for members of the consortium (including the Commission Services) <br>RE CO </p><p>Co-ordinator: Project Contract No: GOCE-CT-2004-505420 Project website:&nbsp;www.floodsite.net <br>HR Wallingford, UK </p><p>Task 8 Flood Inundation Modelling D8.1 Contract No:GOCE-CT-2004-505420 </p><p>DOCUMENT INFORMATION </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Title </strong></li><li style="flex:1"><strong>Flood Inundation Modelling – Model Choice and Proper Application </strong></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><strong>Lead Author </strong></li><li style="flex:1"><strong>Nathalie Asselman </strong></li></ul><p><strong>Paul Bates, Simon Woodhead, Tim Fewtrell, Sandra Soares-Frazão, Yves Zech, Mirjana Velickovic, Anneloes de Wit, Judith ter Maat, Govert Verhoeven, Julien Lhomme </strong><br><strong>Contributors </strong></p><ul style="display: flex;"><li style="flex:1"><strong>Distribution </strong></li><li style="flex:1"><strong>Public </strong></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><strong>Document Reference </strong></li><li style="flex:1"><strong>T08-09-03 </strong></li></ul><p></p><p>DOCUMENT HISTORY </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Date </strong></li><li style="flex:1"><strong>Revision </strong></li></ul><p></p><p>1_0_P02 1_1_P35 1_2_P02 1_3_p02 1_4_P15 1_5_p35 1_6_p01 2_0_P02 2_1_P03 3_0_P02 3_1_P35 3_2_P02 3_3_P01 </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Prepared by </strong></li><li style="flex:1"><strong>Organisation </strong></li></ul><p></p><p>Deltares |Delft UCL </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Approved by </strong></li><li style="flex:1"><strong>Notes </strong></li></ul><p></p><p>22/11/07 25/02/08 01/08/08 23/11/08 3/12/08 </p><ul style="display: flex;"><li style="flex:1">NA </li><li style="flex:1">Initial draft </li></ul><p>SSF </p><ul style="display: flex;"><li style="flex:1">NA </li><li style="flex:1">Deltares|Delft </li></ul><p>Deltares|Delft UniBris results on Scheldt and Thames results on Brembo included General edit <br>NA PB <br>10/12/08 11/12/08 15/12/08 22/01/09 03/02/09 10/02/09 22/02/09 25/3/09 <br>SSF-MV-YZ JL <br>UCL </p><ul style="display: flex;"><li style="flex:1">HRW </li><li style="flex:1">additional results on Thames </li></ul><p></p><ul style="display: flex;"><li style="flex:1">final draft </li><li style="flex:1">NA </li><li style="flex:1">Deltares|Delft </li></ul><p></p><ul style="display: flex;"><li style="flex:1">LWI </li><li style="flex:1">AK </li><li style="flex:1">comments </li></ul><p></p><ul style="display: flex;"><li style="flex:1">NA </li><li style="flex:1">Deltares|Delft </li></ul><p>UCL incl. comment theme leader update on Brembo final report <br>SSF </p><ul style="display: flex;"><li style="flex:1">NA </li><li style="flex:1">Deltares|Delft </li></ul><p></p><ul style="display: flex;"><li style="flex:1">J Bushell </li><li style="flex:1">HR </li><li style="flex:1">Final formatting for publication </li></ul><p>Wallingford </p><p>ACKNOWLEDGEMENT </p><p>The work described in this publication was supported by the European Community’s Sixth Framework Programme through the grant to the budget of the Integrated Project FLOODsite, Contract GOCE-CT- 2004-505420. </p><p>DISCLAIMER </p><p>This document reflects only the authors’ views and not those of the European Community.&nbsp;This work may rely on data from sources external to the members of the FLOODsite project Consortium. Members of the Consortium do not accept liability for loss or damage suffered by any third party as a result of errors or inaccuracies in such data. The information in this document is provided “as is” and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and neither the European Community nor any member of the FLOODsite Consortium is liable for any use that may be made of the information. </p><p>© Members of the FLOODsite <strong>Consortium </strong></p><p></p><ul style="display: flex;"><li style="flex:1">T08_09_03_Flood_inundation_modelling_D8_1_V3_3_P01.doc </li><li style="flex:1">26 03 2009 </li></ul><p>ii <br>Task 8 Flood Inundation Modelling D8.1 Contract No:GOCE-CT-2004-505420 </p><p>SUMMARY </p><p>The EU Directive on the assessment and management of flood risks obliges the EU member states to develop flood risk maps. In areas where data on floods are scarce, inundation models are indispensable. In order to obtain reliable flood risk maps, it is important that a proper type of inundation model is selected and that the models are applied properly. Task 8, entitled “Flood inundation modelling”, supports flood risk managers in the selection and application of inundation models. </p><p>The report starts with some theoretical background on the suite of available model types, from 1D, through quasi-2D, 1D-2D linked and 2D models, that can be used for a variety of applications. The theory on model parameterization is discussed as well. </p><p>Additional information on model choice and application is derived from the models developed for three pilot sites that consisted of the Scheldt estuary in the Netherlands, the Thames estuary in the U.K. and the Brembo river in Italy. </p><p>The theoretical background together with the results of the pilot sites have resulted in an overview of guidelines on the most relevant models for a variety of applications as well as on the correct application of each model type in terms of data requirements and setting parameters such as 2D cell size. The guidelines are reported in Chapter 9 of this report and can also be regarded as a short summary. </p><p></p><ul style="display: flex;"><li style="flex:1">T08_09_03_Flood_inundation_modelling_D8_1_V3_3_P01.doc </li><li style="flex:1">26 03 2009 </li></ul><p>iii <br>Task 8 Flood Inundation Modelling D8.1 Contract No:GOCE-CT-2004-505420 </p><p>CONTENTS </p><p>Document Information Document History Acknowledgement Disclaimer ii ii ii ii <br>Summary Contents iii v</p><p>1. </p><p>2. </p><ul style="display: flex;"><li style="flex:1">Introduction </li><li style="flex:1">1</li></ul><p>112<br>1.1 1.2 1.3 <br>The FLOODsite project Task 8 of the FLOODsite project Report outline </p><p></p><ul style="display: flex;"><li style="flex:1">Flood modelling techniques </li><li style="flex:1">3</li></ul><p>33<br>2.1 2.2 2.3 <br>Introduction: the need for inundation modelling Flow processes in compound channels </p><ul style="display: flex;"><li style="flex:1">Numerical modelling tools </li><li style="flex:1">5</li></ul><p></p><ul style="display: flex;"><li style="flex:1">2.3.1 Three-dimensional&nbsp;models (3D) </li><li style="flex:1">6</li></ul><p>2.3.2 Two-dimensional&nbsp;models (2D and 2D+) 2.3.3 One-dimensional&nbsp;models (1D) <br>67<br>2.3.4 Coupled&nbsp;one-dimensional/two-dimensional models (1D+ and 2D-) 2.3.5 Zero-dimensional&nbsp;or non-model approaches (0D) <br>9<br>10 </p><p>3. </p><p>4. </p><ul style="display: flex;"><li style="flex:1">Model parameterization, validation and uncertainty analysis </li><li style="flex:1">13 </li></ul><p>13 13 13 14 15 16 <br>3.1 3.2 3.3 3.4 3.5 3.6 <br>Boundary condition data Initial condition data Topography data Friction data Model data assimilation Calibration, validation and uncertainty analysis </p><p></p><ul style="display: flex;"><li style="flex:1">Models used in Task 8 </li><li style="flex:1">19 </li></ul><p>19 19 23 23 24 25 29 29 31 32 34 34 34 35 35 36 36 36 38 <br>4.1 4.2 4.3 <br>Introduction LISFLOOD-FP UCL / SV1D and SV2D 4.3.1 Concept&nbsp;and numerical approach 4.3.2 Additional&nbsp;features 4.3.3 Calibration&nbsp;and validation SOBEK 4.4.1 Concept&nbsp;and numerical approach 4.4.2 Additional&nbsp;features 4.4.3 Calibration&nbsp;and validation Infoworks 2D <br>4.4 4.5 <br>4.5.1 Overview&nbsp;of the 1D engine 4.5.2 Overview&nbsp;of the 2D engine 4.5.3 Overview&nbsp;of the linking method 4.5.4 Description&nbsp;of the analytical tests 4.5.5 Results&nbsp;from the analytical tests Rapid Flood Spreading Model (RFSM) 4.6.1 Overview&nbsp;of the RFSM concept 4.6.2 Description&nbsp;of the multiple spilling and friction approach <br>4.6 </p><p></p><ul style="display: flex;"><li style="flex:1">T08_09_03_Flood_inundation_modelling_D8_1_V3_3_P01.doc </li><li style="flex:1">26 03 2009 </li></ul><p>v<br>Task 8 Flood Inundation Modelling D8.1 Contract No:GOCE-CT-2004-505420 </p><p></p><ul style="display: flex;"><li style="flex:1">4.6.3 Overview&nbsp;of the spilling algorithm </li><li style="flex:1">40 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">5. </li><li style="flex:1">Simulating flow in flat agricultural areas located along estuaries or coasts:&nbsp;the Scheldt pilot </li></ul><p>site 5.1 5.2 <br>41 41 44 44 45 46 46 47 52 53 53 55 58 60 63 <br>Description of the study area and the available data Model development 5.2.1 SOBEK 5.2.2 SV2D </p><ul style="display: flex;"><li style="flex:1">Model comparison </li><li style="flex:1">5.3 </li></ul><p>5.4 <br>5.3.1 Introduction 5.3.2 Comparison&nbsp;of SV2D and SOBEK 2D 5.3.3 Comparison&nbsp;of a quasi-2D or 1D<sup style="top: -0.415em;">+ </sup>and a full 2D approach Additional research questions 5.4.1 Impact&nbsp;of breach initiation and breach growth 5.4.2 Impact&nbsp;of the schematisation of buildings 5.4.3 Impact&nbsp;of wind 5.4.4 Impact&nbsp;of hydraulic roughness 5.4.5 Impact&nbsp;of uncertainties in boundary conditions </p><p></p><ul style="display: flex;"><li style="flex:1">6. </li><li style="flex:1">Simulating flow in urban areas located along estuaries or coasts: the Thames pilot site </li><li style="flex:1">67 </li></ul><p>67 69 69 69 69 70 70 70 73 77 79 79 83 85 87 88 <br>6.1 6.2 <br>Study area and available data Model development 6.2.1 LISFLOOD-FP 6.2.2 SOBEK 6.2.3 Infoworks 6.2.4 RFSM <br>6.3 </p><p>6.4 <br>Model comparison 6.3.1 Comparison&nbsp;of SOBEK and LISFLOOD-FP 6.3.2 Comparison&nbsp;of Infoworks and SOBEK 6.3.3 Comparison&nbsp;of RFSM and Infoworks Additional research questions 6.4.1 The&nbsp;impact of the schematisation of buildings 6.4.2 The&nbsp;impact of grid cell size 6.4.3 The&nbsp;impact of hydraulic roughness 6.4.4 The&nbsp;impact of wind 6.4.5 The&nbsp;impact of the schematisation of tunnels </p><p></p><ul style="display: flex;"><li style="flex:1">7. </li><li style="flex:1">Simulating flow in steep mountainous rivers: the Brembo site </li><li style="flex:1">93 </li></ul><p>93 93 </p><ul style="display: flex;"><li style="flex:1">7.1 </li><li style="flex:1">Study area and available data </li></ul><p>7.1.1 The&nbsp;study area 7.1.2 Available&nbsp;data Model development <br>95 </p><ul style="display: flex;"><li style="flex:1">7.2 </li><li style="flex:1">100 </li></ul><p>102 103 104 104 104 110 116 118 118 <br>First- order upwind scheme (Orsa1D-Roe) First-order Lax-Friedrich type scheme (SANA) </p><ul style="display: flex;"><li style="flex:1">7.3 </li><li style="flex:1">Model comparison </li></ul><p>7.3.1 Introduction 7.3.2 Results&nbsp;at selected cross sections 7.3.3 Results&nbsp;along the river at selected times 7.3.4 Maximum&nbsp;water level 7.3.5 Conclusion </p><ul style="display: flex;"><li style="flex:1">7.4 </li><li style="flex:1">Additional research questions </li></ul><p></p><ul style="display: flex;"><li style="flex:1">8. </li><li style="flex:1">Simulating flow in urban areas: flume data </li><li style="flex:1">119 </li></ul><p>119 119 <br>8.1 8.2 <br>Introduction Experimental data </p><p></p><ul style="display: flex;"><li style="flex:1">T08_09_03_Flood_inundation_modelling_D8_1_V3_3_P01.doc </li><li style="flex:1">26 03 2009 </li></ul><p>vi <br>Task 8 Flood Inundation Modelling D8.1 Contract No:GOCE-CT-2004-505420 </p><p>8.2.1 Dam-break&nbsp;flow against an isolated obstacle 8.2.2 Dam-break&nbsp;flow in an idealised urban district Porosity concept Numerical simulations using detailed and simplified models Conclusions <br>119 121 123 124 126 <br>8.3 8.4 8.5 </p><p></p><ul style="display: flex;"><li style="flex:1">9. </li><li style="flex:1">Synthesis / guidelines </li><li style="flex:1">127 </li></ul><p>127 127 127 129 130 132 <br>9.1 9.2 <br>Introduction Model choice 9.2.1 Model&nbsp;complexity 9.2.2 Some&nbsp;available software packages </p><ul style="display: flex;"><li style="flex:1">Model application </li><li style="flex:1">9.3 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">9.4 </li><li style="flex:1">Recommendations </li></ul><p></p><ul style="display: flex;"><li style="flex:1">10. </li><li style="flex:1">References </li><li style="flex:1">135 </li></ul><p></p><p><strong>Tables </strong></p><p>Table 2.1&nbsp;Overview of existing types of hydraulic models (After Table 2 from G. Pender et al. <br>(2006)). <br>Table 4.1&nbsp;Details of the analytical tests Table 4.2&nbsp;Description of the two other routinely used commercial hydraulic softwares Table 5.1&nbsp;Summary of numerical simulations Table 6.1&nbsp;Model efficiency for different versions of the SOBEK model Table 6.2&nbsp;Model efficiency of the SOBEK model using different calculation time steps Table 6.3&nbsp;Cell statistics for the flood extent comparison between Infoworks and Sobek. Table 6.4&nbsp;Fit indicators for the comparison between Infoworks and Sobek. Table 6.5&nbsp;Computational indicators for the comparison between Infoworks and Sobek. Table 6.6&nbsp;Computational indicators for the comparison between Infoworks and RFSM. Table 6.7&nbsp;Cell statistics for the flood extent comparison between Infoworks and RFSM. Table 6.8&nbsp;Fit indicators for the comparison between Infoworks and RFSM. Table 7.1&nbsp;Stage-discharge relation for the downstream section <br>11 35 35 46 72 72 75 75 76 78 78 78 98 99 <br>130 <br>Table 7.2&nbsp;Maximum level water recorded along the river Table 9.1&nbsp;Overview of hydraulic model types and their application </p><p><strong>Figures </strong></p><p>Figure 4.1&nbsp;Representation of a breach in SV2D. Cell interfaces in contact with the sea boundary condition are indicated as thick black line in the inset. <br>Figure 4.2&nbsp;Experimental set-up and initial conditions, all dimensions in metres Figure 4.3&nbsp;Comparison between experimental and numerical flow profiles. Figure 4.4&nbsp;Channel with 90° bend – Plane view (dimensions in m) Figure 4.5&nbsp;Experimental and computed (2D model) flow profiles: (a) t&nbsp;= 3 s,&nbsp;(b) t&nbsp;= 5 s,&nbsp;(c) t = 7 s, (d) t = 14 s <br>Figure 4.6&nbsp;Staggered grid for unsteady channel flow or pipe flow Figure 4.7&nbsp;Schematisation of the Hydraulic Model: a) Combined 1D/2D Staggered Grid; b) <br>Combined Continuity Equation for 1D2D Computations <br>Figure 4.8&nbsp;Delft University of Technology dyke break: top view and side view of the experiment layout (Liang et al., 2004) <br>Figure 4.9&nbsp;Comparison of measured and simulated water levels using the experiment carried out by Delft University of Technology (Duinmeijer, 2002). <br>Figure 4.10 Comparison of measured and simulated position of the front of the flood at different time steps (Duinmeijer, 2002). <br>25 26 27 28 </p><p>28 30 </p><p>30 32 33 33 <br>Figure 4.11 View of the defence system with the Impact Zones and Impact Cells (based on <br>Gouldby et al. 2008). <br>Figure 4.12 Principles and key features of the Impact Zones (based on Gouldby et al. 2008). <br>37 37 </p><p></p><ul style="display: flex;"><li style="flex:1">T08_09_03_Flood_inundation_modelling_D8_1_V3_3_P01.doc </li><li style="flex:1">26 03 2009 </li></ul><p>vii <br>Task 8 Flood Inundation Modelling D8.1 Contract No:GOCE-CT-2004-505420 </p><p>Figure 4.13 Flowchart&nbsp;of the RFSM algorithm (a) and description of the different spilling/merging steps (b). <br>Figure 4.14 Description of the spilling rules in the earlier RFSM. Figure 4.15 Link between the IZ shape and the dynamic filling effects. Figure 4.16 Example of two Volume-Level curves. <br>38 39 39 39 <br>Figure 4.17 Description of the spilling rules in the latest version of RFSM, with the combined role of multiple spilling (MSTol) and friction (Sf). <br>Figure 5.1&nbsp;Location of the study area (a) in the Netherlands, (b) detailed topography, (c) aerial photograph (source: Google earth) <br>40 41 <br>Figure 5.2&nbsp;Flooded polders in Zuid Beveland during the 1953 storm surge. Arrows represent dike breaches. Polders 3, 4a, 6, 8, 9a, 9b, 9c, 11 were flooded by breaches occurring in the primary dikes, polders 4b, 5, 12 were flooded by failure of secondary dikes and polders 7 and 10 were flooded because drainage was obstructed (source: </p><ul style="display: flex;"><li style="flex:1">Rijkswaterstaat &amp; KNMI, 1961) </li><li style="flex:1">42 </li></ul><p>Figure 5.3&nbsp;Primary and secondary dikes schematised in the elevation model. Primary dikes are visualised by the green lines, secondary dikes are shown by pink lines. The blue line represents a small dike for which no detailed elevation data were available. Its height was estimated using the laser altimetry data. The elevation of the area is shown in brown colours, the range varies from about NAP -1.5 m (dark brown) to NAP +1.5 m (orange). <br>Figure 5.4&nbsp;Observed water levels in the Western Scheldt at Waarde and Bath Figure 5.5&nbsp;Distribution of the roughness coefficient k<sub style="top: 0.125em;">s</sub>: light colours indicate low roughness and dark colours indicate high roughness. <br>43 43 </p><p>44 46 <br>Figure 5.6&nbsp;Representation of a breach in SV2D. Cell interfaces in contact with the sea boundary condition are indicated as thick black line in the inset <br>Figure 5.7&nbsp;Comparison points for the predicted water level and velocity by the numerical models <br>Figure 5.8&nbsp;Computed results at comparison point P1: (a) water level and (b) velocity Figure 5.9&nbsp;Computed water level at point P4 Figure 5.10 Computed results at comparison point P7: (a) water level and (b) velocity Figure 5.11 Computed results at comparison point P8: (a) water level and (b) velocity Figure 5.12 Maximum water level (in m+NAP) (a) SOBEK, (b) SV2D instantaneous breaching, <br>(c) SV2D progressive breaching <br>Figure 5.13 Water arrival time (in hours) computed with (a) SOBEK, (b) SV2D instantaneous breaching and (c) SV2D progressive breach opening. <br>47 47 48 48 49 </p><p>49 50 51 52 <br>Figure 5.14 Arrival time (in hours) of maximum water depth computed with (a) SOBEK, (b) <br>SV2D instantaneous breaching and (c) SV2D progressive breach opening. <br>Figure 5.15 Water levels (m +NAP) computed with the 2D and quasi 2D application of SOBEK for model comparison location 1 (a) and location 4 (b) <br>Figure 5.16 Schematisation of 3 polders in 2D (upper half) and quasi 2D (lower half). Red and green lines represent low sections in secondary dikes between the polders. The green section is lower than the red section. <br>Figure 5.17 Breach growth according to the original SOBEK model Figure 5.18 Computed water levels behind the breach in the Reigersbergsche polder (including locations 7 and 8) <br>53 54 </p><p>54 55 56 <br>Figure 5.19 Moment of first inundation Reigersbergsche Polder (a) progressive breach growth <br>(b) instantaneous breaching <br>Figure 5.20 Water depths computed with a coarse grid (a), a finer grid and solid buildings (b) and a finer grid with very high roughness values representing buildings (c) <br>Figure 5.21 Moment&nbsp;of first inundation computed a coarse grid (a), a finer grid and solid buildings (b) and a finer grid with very high roughness values representing </p><ul style="display: flex;"><li style="flex:1">buildings (c) </li><li style="flex:1">57 </li></ul><p>Figure 5.22 Flow velocities computed with a coarse grid (a), a finer grid and solid buildings (b) and a finer grid with very high roughness values representing buildings (c) <br>Figure 5.23 The influence of wind on the computed maximum water depth <br>58 59 </p><p></p><ul style="display: flex;"><li style="flex:1">T08_09_03_Flood_inundation_modelling_D8_1_V3_3_P01.doc </li><li style="flex:1">26 03 2009 </li></ul><p>viii <br>Task 8 Flood Inundation Modelling D8.1 Contract No:GOCE-CT-2004-505420 </p><p>Figure 5.24&nbsp;Difference in water depth (m) between the simulation with wind force 10, direction </p><ul style="display: flex;"><li style="flex:1">west, and the simulation without wind </li><li style="flex:1">60 </li></ul><p>61 <br>Figure 5.25&nbsp;Difference in water depth (m) between simulations with a uniform roughness of n=0.06 sm<sup style="top: -0.415em;">-1/3 </sup>and n=0.03 sm<sup style="top: -0.415em;">-1/3 </sup><br>Figure 5.26&nbsp;Difference in water depth (m) between simulations with a uniform roughness of n=0.06 sm<sup style="top: -0.415em;">-1/3 </sup>and n=0.03 sm<sup style="top: -0.415em;">-1/3 </sup>(location numbers are shown in Figure 5.7, location 1/4 is near the breach in the secondary dike between locations 1 and 4) <br>Figure 5.27&nbsp;Difference in inflow through the breach (m/s) between simulations with a uniform roughness of n=0.06 sm<sup style="top: -0.415em;">-1/3 </sup>and n=0.03 sm<sup style="top: -0.415em;">-1/3 </sup>(location 1 and 7 represent flow into polders with location numbers 1 and 7, location ¼ respresent the flow through the breach in the secondary dike between locations 1 and 4) <br>Figure 5.28&nbsp;Water level time-series used for the sensitivity analysis. Peak water levels correspond with T4000 water levels according to the Dutch approach (darkblue line) and the Belgian approach (pink line) (source: Asselman, et al., 2007). <br>Figure 5.29&nbsp;Comparison of flood extent computed with SOBEK using different boundary conditions: (a) T4000 water level according to the Dutch approach, (b) T4000 water level according to the Belgian approach. <br>62 62 64 64 67 68 <br>Figure 6.1&nbsp;Map of the indicative tidal flood risk area of the Thames Region highlighting the <br>Greenwich study area. Data courtesy of EA Thames region. <br>Figure 6.2&nbsp;Aerial photograph of the study area. The Millennium dome and the Thames barrier are clearly visible. (source: Google earth) <br>Figure 6.3&nbsp;Differences in water depths computed with LISFLOOD-FP and SOBEK using a high resolution 5 m DEM. light grey colours represent areas where LISFLOOD-FP computes greater depths. In dark grey areas SOBEK predicts larger depths. <br>Figure 6.4&nbsp;Difference in time of first wetting using digital elevation models with a mesh of 5 m (a) and 10m (b). Green = LISFLOOD-FP is faster, red = SOBEK is faster. <br>Figure 6.5&nbsp;Difference in flood extent between Infoworks and Sobek. Figure 6.6&nbsp;Difference in flood depth between Infoworks and Sobek (calculated as IW minus <br>Sobek). <br>Figure 6.7&nbsp;Local difference in flood extent due to the buildings representation. Figure 6.8&nbsp;Aerial photograph of buildings represented in Figure 6.7(source: Google earth) Figure 6.9&nbsp;Difference in flood extent between Infoworks and RFSM (5 m grid). Figure 6.10 Difference in flood extent between Infoworks and RFSM (2 m grid). Figure 6.11 Flooded area for the 5m grid with (brown) or without buildings (green). Figure 6.12 Difference&nbsp;in computed maximum water depth between the 5m grid with and without buildings. Red/yellow colours represent areas where the DEM without buildings results in greater depths; in blue coloured areas the DEM with buildings predicts larger depths. <br>70 71 74 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    153 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us