CO-ORDINATE GEOMETRY in the (X,Y) PLANE

CO-ORDINATE GEOMETRY in the (X,Y) PLANE

<p> C4 Chapter 2</p><p>CO-ORDINATE GEOMETRY IN THE (x,y) PLANE</p><p>PARAMETRIC EQUATIONS</p><p>Coordinates x and y are expressed as functions of a parameter. x = f(t) and y = g(t)</p><p>Example</p><p>Draw the curve given by the parametric equations: 2 x = t + 3, y = t for – 3 £ t £ 3 </p><p>Draw up a table of values</p><p> t -3 -2 -1 0 1 2 3 x 0 1 2 3 4 5 6 y 9 4 1 0 1 4 9</p><p> y 10</p><p>8</p><p>6</p><p>4</p><p>2</p><p>-2 0 2 4 6 x</p><p>JMcC 1</p><p>2 x = t + 3, y = t for – 3 £ t £ 3 C4 Chapter 2</p><p>To find the Cartesian equation of the curve, you need to eliminate the parameter between the two equations</p><p>Example 1</p><p>Find the Cartesian equation of the curve given by the parametric equations: 2 x = t + 3, y = t </p><p>Make t the subject Þ t = x – 3 </p><p>2 Substitute into the y equation Þ y = (x – 3) </p><p>Check: this is the parabola y = x2 translated 3 units to the right (see previous example)</p><p>Example 2</p><p>Find the Cartesian equation of the curve given by the parametric equations: 1 2 x = , y = , t ¹ – 3, t ¹ 5 t + 3 t – 5</p><p>Make t the subject: 1 1 1 1 – 3x x = Þ t + 3 = Þ t = – 3 = t + 3 x x x Substitute into the y equation: </p><p>1 – 3x 1 – 8x t – 5 = – 5 = x x 1 – 8x 2x \ y = 2 ¸ Þ y = x 1 – 8x</p><p>Ex 2A p 10</p><p>JMcC 2</p><p>2 x = t + 3, y = t </p><p>2 SMuabkset itt utthee insutob jtehcet yÞ eqtua=tioxn–Þ3 y = (x – 3) </p><p>1 2 x = , y = , t ¹ – 3, t ¹ 5 t + 3 t – 5</p><p>MSuabkset itt1 utt1hee – isn13utobx– jte8hcext :y eq11ua–tio8nx2: x 1 1 – 3x xt\ –=y5= =2 ¸Þ t +–35Þ== y Þ= t = – 3 = t + 3 x x x x1 – 8xx x C4 Chapter 2</p><p>USING PARAMETRIC EQUATIONS TO SOLVE PROBLEMS</p><p>Example 1</p><p>Find the coordinates of the point where the curve with parametric equations: x = √t, y = 4t – 25 meets the x-axis</p><p>25 At the x – axis, y = 0 Þ 4t – 25 = 0 Þ t = 4</p><p>25 5 \x = t = ± = ± 4 2 </p><p>æ 5 ö æ 5 ö Points of intersection are ç , 0 ÷ and ç – , 0 ÷ è 2 ø è 2 ø</p><p>Example 2</p><p>Find the coordinates of the points of intersection of the curve with parametric equations: x = 2t, y = t2 and the straight line y = x + 3</p><p>Substitute the parameters into the equation of the line: </p><p>2 2 t = 2t + 3 Þ t – 2t – 3 = 0 \ (t – 3)(t + 1) = 0 Þ t = 3, – 1 </p><p>\ when t = 3 Þ x = 6 and y = 9 </p><p>\ when t = – 1 Þ x = – 2 and y = 1 </p><p>Points of intersection are (6, 9) and ( – 2, 1) </p><p>Ex 2B p 13</p><p>JMcC 3</p><p>25 5 25 \Atx th=e xt –=a±x is, y = =0 ± Þ 4t – 25 = 0 Þ t = æ 5 ö æ 45 ö Points of intersec4tion are2 ç , 0 ÷ and ç – , 0 ÷ è 2 ø è 2 ø</p><p>2 2 tSP\ou i(wb=ntsths2t–ei tnou3 f+t) e(int=3 the+3Þer–1s Þp)e1tac=rÞtxai–o0mn=2xe Þtat6=re –er t s3a – (=ni6n2d=t,3 o 9,0 ya)t h–n e= da1 en 9 qdy u a= (tio1– n 2o,f 1 t) he line: C4 Chapter 2</p><p>PARAMETRIC EQUATIONS INVOLVING TRIGONOMETRIC PARAMETERS</p><p>You will need to use some of the Trigonometric Identities from C3</p><p>Example 1</p><p>Find the Cartesian equation of the curve given by: x = cos t, y = sin 2t y = sin 2t = 2 sin t cos t = 2x sin t \ we need to find sin t in terms of x or y </p><p>2 2 2 2 sin t = 1 – cos t Þ sin t = 1 – cos t = 1 – x </p><p>2 \y = 2x 1 – x </p><p>Example 2</p><p>Find the Cartesian equation of the curve given by: x = sec t, y = 4 sin t</p><p>1 1 y = 4 sin t and x = sec t = Þ cos t = cos t x</p><p>2 2 2 2 x – 1 (x – 1) sin t = 1 – cos t = 1 – (1 ¸ x ) = 2 = x x </p><p>2 4 (x – 1) \ y = x</p><p>Ex 2C p 15</p><p>JMcC 4</p><p>2 22 2 2 s\yiny =wt=es =in2 e1x2etd–1 =tc–oo2 sxf sitn indÞ ts icnso itns itn =ter2m1xs –s oincf o txs otr= y 1 – x </p><p>2 1 2 1 2 y = 4 sin4 t ( x an–d2 1 )x = sec t = 2 Þ cxos– t1= (x – 1) s\in ty== 1 – cos t = 1 – (1 ¸ x ) = 2 = x cos t x x x C4 Chapter 2</p><p>AREA UNDER A CURVE GIVEN BY PARAMETRIC EQUATIONS</p><p> dx Since Area = y dx, Chain Rule Þ y dx = y dt ò ò ò dt</p><p>Example</p><p>The diagram shows the curve with parametric equations: 2 x = t , y = t(5 – t) The region R is bounded by the curve and the x-axis. Find the area of R.</p><p> y</p><p>6</p><p>4</p><p>R 2</p><p>0 5 10 15 20 25 x</p><p>Curve crosses x – axis at (25, 0) Þ t(5 – t) = 0 Þ t = 5 25 5 dx 5 Area = y dx = y dt = t(5 – t) ´ 2t dt ò0 ò0 dt ò0</p><p>5 3 4 5 2 3 é 10t 2t ù = (10t – 2t ) dt = ê – ú = 104·17 ò0 ë 3 4 û o</p><p>Ex 2D p 18 & Mixed Ex 2E p 19</p><p>JMcC 5</p><p> dx Since Area = 2 y dx, Chain Rule Þ y dx = y dt x =òt , y = t(5 – t) ò ò dt</p><p>Curve cros25ses x – axis5 at (d2x5, 0) Þ 5t(5 – t) = 0 Þ t = 5 Area5= y dx = y dt3 = 4 t(55 – t) ´ 2t dt 2 3 é ù ò0 ò0 dt10t ò20t = (10t – 2t ) dt = ê – ú = 104·17 ò0 ë 3 4 û o</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us