Answers to End-Of-Chapter Problems

Answers to End-Of-Chapter Problems

<p>ANSWERS TO END-OF-CHAPTER PROBLEMS</p><p>Chapter 1</p><p>1.1) 182, 5.46 m 1 1.2)  1 )  3Hz,  5m,T  0.33s,U  4,v  1.67ms Dir. of prop. = z 1  2 )  0.557Hz,  0.9m,T  1.8s,U  0.4,v  0.5ms Dir. of prop. = -z</p><p>1.3) 1014 Hz , 3 m, x-direction, 1, /2.</p><p>1.4) a) 51014 Hz b) 483.7 nm c) 1.24</p><p>1.7) a) eikx b) eik (x y) c) eik (x yz)</p><p> n cos   t sin (1 1 ) 1.9) 2 2 2 n2  n1 sin </p><p>Chapter 2</p><p> P d nd  1 1  n n  2.2)a)  2 2  P P P P d n P d  1  2  1 2 (1 2 )    n' n' n2 n' n' n2 </p><p> 1 0  P P b)  P n  c) P  P  1 2   1 2 n  n' n'  2</p><p> P nd  P n'd d) D  2 e) D' 1 n2 P n2 P</p><p> f1 f 2  f1 ' f 2 2.3) a) P  P1P2l b) f  c) f ' l l</p><p>1 2.4) a) P  D  D'  f f</p><p>5 3 b) P  D  D'  f 4 f 5</p><p>2 2.5) P1  P2  P0  P  P0 d 2.7) a) E.P. at L2 with diameter 6.0 cm b) Ex.P. 0.5 cm to the left of aperture stop, diameter </p><p>3.75 cm. c) Image 6.15 cm to the right of L2 , height 3.0 cm.</p><p>Chapter 3</p><p> ikz 3.1) 2U 0e cost</p><p>3.2) 40 kHz</p><p>3.3) a) 0.36 mm b) 0.3 m c) 30 km</p><p>9 10 3.4) a) 3.2 km b)   1.310 m,   10 Hz, Lc  30 mm</p><p>  1015 Hz,   133 nm</p><p>3.5) 0.25 mm</p><p>3.7) 2 millirad</p><p>3 2 3.8) b) Dc  53.8 m, Ac  2.27 10 mm</p><p>2 c) Dc  0.5 mm, Ac  0.2 mm</p><p>Chapter 4</p><p>4.1) 290.3 km</p><p>4.2) 0.1 mm</p><p>2  J1 (D) 4.3) 30    </p><p>U 4.4) 0 ( f  f )  ( f  f ) Lsin c(Lf ) 2i x 0 x 0 x</p><p>1  1 1  4.5) ( f x )  ( f x  2 f 0 )  ( f x  2 f 0 )  LsincLf x 2  2 2 </p><p>2 2 2 4.16) a) 4X sinc (Xf x )cos (df x )</p><p>2 2 2 2 4.17)b) I  u  XYsinc(Xf x )sinc(Yf y )comb(df x )  (Nd) sinc (Ndf x ) (0) 4.19) x f  10 mm, x f  0.1 mm </p><p>1 1 1 4.21) a) ( f  f )  ( f  ( f  f ))  ( f  ( f  f )) 2 x 0 4 x 1 0 4 x 1 0</p><p>D 5 4 D b) sin   c) (1 cos 2f x ) d) f  m 4 f 16 5 1 i 1 b</p><p>2 4.24) I i   (x, y)</p><p>b 4.25) a) s  1.22 b) 0.73 D</p><p>Chapter 5</p><p>108 5.1) a) 483 nm b) 108Wm2m 1 c) Wm2 sr 1m 1 d) 2162 Wm 1 </p><p>5.2) 0.62 mA</p><p>2 5.3) a) , No b) 4/3 r 1</p><p>2  wx 2  f 5.4) a) w exp 2( )  b) 0.32  f  w</p><p>1  1 2  5.5) ()  exp  ( h ) (1 cos 2) 2  2 </p><p> 1 2   n () max  exp  (n / 3)  2 </p><p>1 5.6)c) i) f (x)  (1 cos 2f x) out 2 0</p><p>1  ii) f out (x)  cos f 0 x  cos f 0 x 2 </p><p>1 5 iii) f out (x)   cos 2n  0.2 f 0 x 2 n1 Chapter 6</p><p> 2 sin r sin i 6.4) b) M   ( 1)  1 sin 0 sin 0 6.5) 44</p><p>6.6) J 0 (2.4)  0</p><p>6.7) a) 13 fringes  4.3 m b) Left: 6 fringes   1.0 m, Right: 8 fringes   1.3 m.</p><p>Chapter 7</p><p>7.3) c) 2 fringes</p><p> 7.5 a) 2sin( / 2)sin 1</p><p> b) In the limit: 1   / 4,   / 2</p><p> c) 1666 lines/mm</p><p>Chapter 8</p><p>2 ms 8.1) a) I  2F I(x, y) (1 cos 2 x f ) z</p><p>z b) c) 0.32 mm d) 1.4 m, 7.66 m md</p><p>Chapter 9</p><p>9.1 a) R or L b) Orthogonal P-state c) P-states d) L- and R-states</p><p>1  ei / 4 e i / 4   cos( / 2) sin( / 2)      9.3) a)  i / 4 i / 4  b)   2 e e   sin( / 2) cos( / 2)</p><p>cos( / 2)  sin( / 2) 9.4) a)   b) Py  sin( / 2) cos( / 2)  9.6) calcite: 0.86 m, quartz: 16.4 m</p><p>9.7) I(  0)  0.5sin 2 (2), I(  0.1)  0.578sin 2 (2)</p><p>2sin 2 cos sin 2   n 2 9.11) tan   sin 2   2sin 2 cos 2   n 2 cos 2 </p><p> n sin 2    (n  n 2  8) ,  = 59.78 2</p><p>   9.12) a) sin  b) 0.225  4 ( ) 2 1 n</p><p>Chapter 10</p><p>10.1) a) 2.5 h b) 3 min c) 8 h d) 10 min</p><p> 0 1 0  1   10.6) 1 4 1 4    0 1 0 </p><p>Chapter 11</p><p>7(2 f1  f 2  f 4  2 f5 ) 11.1) x p  10(2 f1  f 2  2 f3  f 4  2 f5 )</p><p>11.2) N = 3  x p = -0.045, N = 5  x p = 0.087</p><p>I  I  I  I 11.4) tan   1 2 3 4  I1  I 2  I 3  I 4</p><p>Chapter 13</p><p>1 13.1) a) 0,m  sin (m  0.03) b) 40.8 c) 39 d) 0.6538 13.2) 0.77 m</p><p>13.5) a) 1079 b) 3286 c) 1534 d) 1.98 m. </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us