The Fundamental Identities

The Fundamental Identities

<p> MA 154 Lesson 3 Delworth 6.2 Trigonometric Functions of Angles The Fundamental Identities: (1) The reciprocal identities: 1 1 1 csc  sec  cot  sin cos tan (2) The tangent and cotangent identities: sin cos tan  cot  cos sin (3) The Pythagorean identities: sin2  cos2  11 tan2  sec2 1 cot2  csc2</p><p>Take the simple right triangle with sides 3, 4 and 5 with  opposite the side of length 4.</p><p>Find sin and cos, now find sin2  cos2</p><p> sin2  cos2  1 is a Pythagorean identity since it is derived from the Pythagorean Theorem.</p><p>Divide both sides by sin2  to find another Pythagorean identity. Divide both sides by cos2  to find yet another one.</p><p>Each of the three Pythagorean identities creates two more identities by subtracting a term from the left side to the right side. sin2  cos2  1 1 tan2  sec2 1 cot2  csc2 sin2  1 cos2 tan2  sec2 1 cot2  csc2  1 cos2  1 sin2 1 sec2  tan2 1 csc2  cot2</p><p> Verify the identity by transforming the left side into the right side. tan cot  1 sin3cot3 cos3</p><p></p><p></p><p></p><p></p><p> </p><p></p><p>  MA 154 Lesson 3 Delworth 6.2 Trigonometric Functions of Angles     sin  c o s  sec 2  2     csc  1  c o t  tan    2  sin  2 </p><p>2 2 2 (1 cos)(1 cos) sin2 cossec  1 sin</p><p> 2 2  1 sin1 tan 1 cot  tan  csc sec</p><p> </p><p>  MA 154 Lesson 3 Delworth 6.2 Trigonometric Functions of Angles Using the coordinate system, </p><p>Notice that the adjacent side corresponds to the x-value of the coordinate and the opposite side corresponds the y-value of the coordinate (x, y) The idea that the cosine of  corresponds to the x-axis and the sine of  corresponds to the y-axis is one that you need to get use to. </p><p>If  is an angle in standard position on a rectangular coordinate system and if P(-5, 12) is on the terminal side of  , find the values of the six trigonometric functions of  .</p><p>If  is an angle in standard position on a rectangular coordinate system and if P(4, 3) is on the terminal side of  , find the values of the six trigonometric functions of  .</p><p>Find the exact values of the six trigonometric functions of  if  is in standard position and the terminal side of  is in the specified quadrant and satisfies the given condition.</p><p>III; on the line 4x – 3y = 0 II; parallel to the line 3x + y – 7 = 0</p><p>  </p><p>  </p><p>   MA 154 Lesson 3 Delworth 6.2 Trigonometric Functions of Angles Find the quadrant containing  if the given conditions are true. a) tan  < 0 and cos  > 0 I II sin All b) sec  > 0 and tan  < 0 csc</p><p> c) csc  > 0 and cot  < 0 III IV tan cos d) cos  < 0 and csc  < 0 cot sin</p><p>Use the fundamental identities to find the values of the trigonometric functions for the given conditions:</p><p>12 tan  and cos  0 sec  4 and csc  0 5</p><p>  </p><p> </p><p> </p><p> </p><p> </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us