
<p> MA 154 Lesson 3 Delworth 6.2 Trigonometric Functions of Angles The Fundamental Identities: (1) The reciprocal identities: 1 1 1 csc sec cot sin cos tan (2) The tangent and cotangent identities: sin cos tan cot cos sin (3) The Pythagorean identities: sin2 cos2 11 tan2 sec2 1 cot2 csc2</p><p>Take the simple right triangle with sides 3, 4 and 5 with opposite the side of length 4.</p><p>Find sin and cos, now find sin2 cos2</p><p> sin2 cos2 1 is a Pythagorean identity since it is derived from the Pythagorean Theorem.</p><p>Divide both sides by sin2 to find another Pythagorean identity. Divide both sides by cos2 to find yet another one.</p><p>Each of the three Pythagorean identities creates two more identities by subtracting a term from the left side to the right side. sin2 cos2 1 1 tan2 sec2 1 cot2 csc2 sin2 1 cos2 tan2 sec2 1 cot2 csc2 1 cos2 1 sin2 1 sec2 tan2 1 csc2 cot2</p><p> Verify the identity by transforming the left side into the right side. tan cot 1 sin3cot3 cos3</p><p></p><p></p><p></p><p></p><p> </p><p></p><p> MA 154 Lesson 3 Delworth 6.2 Trigonometric Functions of Angles sin c o s sec 2 2 csc 1 c o t tan 2 sin 2 </p><p>2 2 2 (1 cos)(1 cos) sin2 cossec 1 sin</p><p> 2 2 1 sin1 tan 1 cot tan csc sec</p><p> </p><p> MA 154 Lesson 3 Delworth 6.2 Trigonometric Functions of Angles Using the coordinate system, </p><p>Notice that the adjacent side corresponds to the x-value of the coordinate and the opposite side corresponds the y-value of the coordinate (x, y) The idea that the cosine of corresponds to the x-axis and the sine of corresponds to the y-axis is one that you need to get use to. </p><p>If is an angle in standard position on a rectangular coordinate system and if P(-5, 12) is on the terminal side of , find the values of the six trigonometric functions of .</p><p>If is an angle in standard position on a rectangular coordinate system and if P(4, 3) is on the terminal side of , find the values of the six trigonometric functions of .</p><p>Find the exact values of the six trigonometric functions of if is in standard position and the terminal side of is in the specified quadrant and satisfies the given condition.</p><p>III; on the line 4x – 3y = 0 II; parallel to the line 3x + y – 7 = 0</p><p> </p><p> </p><p> MA 154 Lesson 3 Delworth 6.2 Trigonometric Functions of Angles Find the quadrant containing if the given conditions are true. a) tan < 0 and cos > 0 I II sin All b) sec > 0 and tan < 0 csc</p><p> c) csc > 0 and cot < 0 III IV tan cos d) cos < 0 and csc < 0 cot sin</p><p>Use the fundamental identities to find the values of the trigonometric functions for the given conditions:</p><p>12 tan and cos 0 sec 4 and csc 0 5</p><p> </p><p> </p><p> </p><p> </p><p> </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages4 Page
-
File Size-