The Definite Integrals

The Definite Integrals

<p>Definite Integrals Advanced Level Pure Mathematics Definite Integrals 1 Properties of Definite Integrals 3 Integration by Parts 4 Continuity and Differentiability of a Definite Integral 5 Improper Integrals 6</p><p>Definite Integrals</p><p>Definition Let f (x) be a continuous function defined on [a,b] divide the interval by the points</p><p> a  x0  x1  x2  ⋯  xn1  b from a to b into n subintervals. (not necessarily equal </p><p> width) such that when n   , the length of each subinterval will tend to zero.</p><p> th  [x , x ] i  1,2,, n lim(xi  xi1) f (i ) In the i subinterval choose i i1 i for . If n exists </p><p> and is independent of the particular choice of xi and  i , then we have</p><p> b n f (x) dx  lim (xi  xi1) f (i ) a n  i1</p><p> b  a Remark For equal width, i.e. divide [a, b] into n equal subintervals of length, i.e. h  , n</p><p> b n n b  a we have f (x) dx  lim f (i )h  lim f (i ) . a n  n  i1 i1 n</p><p>Choose  i  xi and xi  a  ih</p><p> b n b  a  f (x) dx  lim f (a  i) h a n  i1 n</p><p> b n1 b  a OR f (x) dx  lim f (a  i) h a n  i0 n</p><p> 2 2 2  1  2  1   2   n 1  Example Evaluate lim 1  1   1    1   n n   n   n   n  </p><p>Page 1 Definite Integrals Advanced Level Pure Mathematics</p><p> 1 1 1  * Example I = lim  ⋯  n n2  n n2  2n n2  2n2 </p><p>1 x x x *AL95II (a) Evaluate  a  b 1 , where a,b  0 . lim  x0 3 </p><p>(b) By considering a suitable definite integral, evaluate</p><p> 12 22 n2  lim  ⋯   3 3 3 3 3 3  n n 1 n  2 n  n </p><p> dx AL83II-1 Evaluate (a) ,  (x  a)(x  b)</p><p>  (b) 4 ln(1 tan x)dx , [ Hint: Put u   x .] 0 4</p><p>1   2  (n 1)   *(c) lim cos  cos ⋯ cos  n n  n n n </p><p>Properties of Definite Integrals</p><p>P1 The value of the definite integral of a given function is a real number, depending on its lower</p><p> and upper limits only, and is independent of the choice of the variable of integration, i.e.</p><p> b b b f (x)dx  f (y)dy  f (t)dt . a a a</p><p> b a P2 f (x)dx   f (x)dx a b</p><p> a b b P3 f (x)dx  f (x)dx  0 dx  0 a b a</p><p> b c b P4 Let a  c  b , then f (x)dx  f (x)dx  f (x)dx a a c</p><p>P5* Comparison of two integrals</p><p> b b If f (x)  g(x) x  (a, b) , then f (x)dx  g(x)dx a a</p><p>Example x 2  x , for all x  (0,1) ; </p><p>1 1 hence x 2 dx  x dx . 0 0</p><p>Page 2 Definite Integrals Advanced Level Pure Mathematics</p><p>3  2  2 Example Prove that (a) 2 x sin x dx    . 0 3  2 </p><p>  (b) 2 sinn xdx  2 sinn1 xdx 0 0</p><p>P6 Rules of Integration</p><p>If f (x), g(x) are continuous function on [a, b] then </p><p> b b (a) kf (x)dx  k f (x)dx for some constant k. a a</p><p> b b b (b)  f (x)  g(x)dx  f (x)dx  g(x)dx . a a a</p><p> a a P7* (a) f (x)dx  f (a  x)dx . a : any real constant. 0 0</p><p> a a (b) f (x) dx   f (x)  f (x) dx . a 0</p><p>2a a (c) f (x)dx   f (x)  f (2a  x) dx 0 0</p><p> b b (d) f (x)dx  f (a  b  x)dx a a</p><p>Exercise 7C</p><p> a a 1. * By proving that f (x)dx  f (a  x)dx (7c5) 0 0</p><p>  sin x evaluate (a) 2 (cos x  sin x)1997 dx (b) 2 dx 0 0 sin x  cos x</p><p> a a 2 (a) Show that f (x) dx   f (x)  f (x) dx (7c6) a 0</p><p>(b) Using (a), or otherwise, evaluate the following integrals:</p><p> 1 4 d 2 (i)  (iii) ln(x  1 x )dx  1 4 1 sin</p><p>Remind sin x,ex  e x are odd functions.</p><p>1 cos x, are even functions. x2 1</p><p>Page 3 Definite Integrals Advanced Level Pure Mathematics Graph of an odd function Graph of an even function</p><p>P8 (i) If f (x)  f (x) (Even Function)</p><p> a a then f (x) dx  2 f (x) dx a 0</p><p>(ii) If f (x)   f (x) (Odd Function)</p><p> a then f (x) dx  0 a</p><p>Definition Let S be a subset of R , and f (x) be a real-valued function defined on S . f (x) is called a </p><p>PERIODIC function if and only if there is a positive real number T such that f (x  T)  f (x) , </p><p> for x  S . The number T is called the PERIOD.</p><p>P9 If f (x) is periodic function, with period T i.e. f (x  T)  f (x)</p><p>  T (a) f (x)dx  f (x)dx   T</p><p>  T (b) f (x)dx  f (x)dx 0 T</p><p>T  T (c) f (x)dx  f (x)dx  0</p><p> nT T (d) f (x) dx  n f (x) dx for n  Z  0 0</p><p>Theorem Cauchy-Inequality for Integration</p><p>If f (x) , g(x) are continuous function on [a,b] , then</p><p> b 2  b 2  b 2   f (x)g(x)dx    f (x) dx g(x) dx  a   a  a </p><p>Theorem Triangle Inequality for Integration</p><p> b b f (x) dx  f (x) dx a a</p><p>Integration by Parts</p><p>Theorem Integration by Parts</p><p>Let u and v be two functions in x . If u'(x) and v'(x) are continuous on a,b, then</p><p>Page 4 Definite Integrals Advanced Level Pure Mathematics</p><p> b b b uv'dx  uv  vu'dx a a a</p><p> b b b or udv  uv  vdu a a a</p><p> sin kx * AL84II-1 (a) For any non-negative integer k, let uk  dx . 0 sin x</p><p>Express uk 2 in terms of uk . </p><p>Hence, or otherwise, evaluate uk .</p><p> (b) For any non-negative integers m and n , let I(m,n)  2 cosm  sin n dθ 0</p><p>(i) Show that if m  2 , then </p><p> m 1 I(m,n) =   I(m  2, n  2) .  n 1  (ii) Evaluate I(1,n) for n  0 .</p><p>(iii) Show that if n  2 , then </p><p> n 1 I(0,n) =   I(0,n  2) .  n  (iv) Evaluate I(6,4) .</p><p> AL94II-11 For any non-negative integer n , let 4 n In  tan x dx 0</p><p> n1 1   1   (a) (i) Show that    In    . n 1  4  n 1  4 </p><p>4x  [ Note: You may assume without proof that x  tan x  for x [0, ] . ]  4</p><p> lim In (ii) Using (i), or otherwise, evaluate n .</p><p>1 (iii) Show that I  I  for n  2,3,4,. n n2 n 1</p><p> n (1)k 1  (b) For n  1,2,3, , let an   . k 1 2k 1</p><p>(i) Using (a)(iii), or otherwise, express an in terms of I 2n .</p><p> lim an (ii) Evaluate n .</p><p>Page 5 Definite Integrals Advanced Level Pure Mathematics Continuity and Differentiability of a Definite Integral</p><p>Theorem Mean Value Theorem for Integral</p><p>If f (x) is continuous on [a,b] then there exists some c in [a,b] and </p><p> b f (x)dx  f (c)(b  a) a</p><p>Theorem Continuity of definite Integral</p><p> x If f (t) is continuous on a,band let A(x)  f (t)dt x [a,b] then A(x) is continuous at a</p><p> each point x in a,b .</p><p>Theorem * Fundamental Theorem of Calculus</p><p> x Let f (t) be continuous on [a,b] and F(x)  f (t)dt . Then F'(x)  f (x) , x  (a,b) a</p><p> g(x) Remark : H (x)  f (t)dt  H '(x)  f (g(x)) g'(x) a</p><p>Example Let f : R  R be a function which is twice-differentiable and with continuous second </p><p> x t derivative. Show that f (x)  f (0)  xf '(0)   f ''(s)dsdt , x  R . 0  0 </p><p> d x n * AL90II-5 (a) Evaluate f (t) dt , where f is continuous and n is a positive integer. dx 0</p><p>2 x 2 (b) If F(x)  et dt , find F '(1). x3</p><p> x  1 t 2 1  AL97II-5(b) Evaluate lim  3 e dt  2  . x0  x 0 x </p><p>AL98II-2 Let f : R  R be a continuous periodic function with period T .</p><p> d xT x (a) Evaluate  f (t)dt  f (t)dt dx  0 0 </p><p>Page 6 Definite Integrals Advanced Level Pure Mathematics</p><p> xT T (b) Using (a), or otherwise, show that f (t)dt  f (t)dt for all x . x 0</p><p>Improper Integrals</p><p> b Definition A definite integral f (x)dx is called IMPROPER INTEGRAL if the interval [a,b] of a</p><p> integration is infinite, or if f (x) is not defined or not bounded at one or more points in [a,b].</p><p> 1  1  x   1 Example e dx , x 2 , tan xdx , dx are improper integral. e dx 0 2 0  0 x</p><p> b Definition (a) f (x)dx is defined as lim f (x)dx a b a</p><p> b b (b) f (x)dx is defined as lim f (x)dx  a a</p><p> c  (c) f (x)dx is defined as f (x)dx  f (x)dx for any real number c .  - c</p><p> c ℓ ( Or lim f (x)dx  lim f (x)dx ) ℓ ℓ ℓc</p><p>(d) If f (x) is continuous except at a finite number of points, say a, x1, b where </p><p> b a  x1  b , then f (x)dx is defined to be a</p><p> c ℓ d ℓ lim f (x)dx  lim f (x)dx  lim f (x)dx  lim f (x)dx  ℓ  c  ℓ  d ℓa ℓx1 ℓx1 ℓb</p><p> for any c,d such that a  c  x1  d  b .</p><p>Definition The improper integral is said to be Convergent or Divergent according to the improper </p><p> integral exists or not.</p><p>Theorem Let f (x) and g(x) be two real-valued function continuous for x  a . If 0  f (x)  g(x)</p><p>  x  a then the fact that f (x)dx diverges implies g(x)dx diverges and the fact that a a</p><p>  g(x)dx converges implies that f (x)dx converges. a a</p><p>Page 7 Definite Integrals Advanced Level Pure Mathematics Example Determine whether the improper integrals are convergent or divergent.</p><p>0 a) xe x dx (p.109 7-45c) </p><p>2 dx b) 2 2 (p.112 7-50 b) 4 - x</p><p>1 dx c) (p.112 7-50 c) 1 x 2</p><p>Page 8</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us