<p>Definite Integrals Advanced Level Pure Mathematics Definite Integrals 1 Properties of Definite Integrals 3 Integration by Parts 4 Continuity and Differentiability of a Definite Integral 5 Improper Integrals 6</p><p>Definite Integrals</p><p>Definition Let f (x) be a continuous function defined on [a,b] divide the interval by the points</p><p> a x0 x1 x2 ⋯ xn1 b from a to b into n subintervals. (not necessarily equal </p><p> width) such that when n , the length of each subinterval will tend to zero.</p><p> th [x , x ] i 1,2,, n lim(xi xi1) f (i ) In the i subinterval choose i i1 i for . If n exists </p><p> and is independent of the particular choice of xi and i , then we have</p><p> b n f (x) dx lim (xi xi1) f (i ) a n i1</p><p> b a Remark For equal width, i.e. divide [a, b] into n equal subintervals of length, i.e. h , n</p><p> b n n b a we have f (x) dx lim f (i )h lim f (i ) . a n n i1 i1 n</p><p>Choose i xi and xi a ih</p><p> b n b a f (x) dx lim f (a i) h a n i1 n</p><p> b n1 b a OR f (x) dx lim f (a i) h a n i0 n</p><p> 2 2 2 1 2 1 2 n 1 Example Evaluate lim 1 1 1 1 n n n n n </p><p>Page 1 Definite Integrals Advanced Level Pure Mathematics</p><p> 1 1 1 * Example I = lim ⋯ n n2 n n2 2n n2 2n2 </p><p>1 x x x *AL95II (a) Evaluate a b 1 , where a,b 0 . lim x0 3 </p><p>(b) By considering a suitable definite integral, evaluate</p><p> 12 22 n2 lim ⋯ 3 3 3 3 3 3 n n 1 n 2 n n </p><p> dx AL83II-1 Evaluate (a) , (x a)(x b)</p><p> (b) 4 ln(1 tan x)dx , [ Hint: Put u x .] 0 4</p><p>1 2 (n 1) *(c) lim cos cos ⋯ cos n n n n n </p><p>Properties of Definite Integrals</p><p>P1 The value of the definite integral of a given function is a real number, depending on its lower</p><p> and upper limits only, and is independent of the choice of the variable of integration, i.e.</p><p> b b b f (x)dx f (y)dy f (t)dt . a a a</p><p> b a P2 f (x)dx f (x)dx a b</p><p> a b b P3 f (x)dx f (x)dx 0 dx 0 a b a</p><p> b c b P4 Let a c b , then f (x)dx f (x)dx f (x)dx a a c</p><p>P5* Comparison of two integrals</p><p> b b If f (x) g(x) x (a, b) , then f (x)dx g(x)dx a a</p><p>Example x 2 x , for all x (0,1) ; </p><p>1 1 hence x 2 dx x dx . 0 0</p><p>Page 2 Definite Integrals Advanced Level Pure Mathematics</p><p>3 2 2 Example Prove that (a) 2 x sin x dx . 0 3 2 </p><p> (b) 2 sinn xdx 2 sinn1 xdx 0 0</p><p>P6 Rules of Integration</p><p>If f (x), g(x) are continuous function on [a, b] then </p><p> b b (a) kf (x)dx k f (x)dx for some constant k. a a</p><p> b b b (b) f (x) g(x)dx f (x)dx g(x)dx . a a a</p><p> a a P7* (a) f (x)dx f (a x)dx . a : any real constant. 0 0</p><p> a a (b) f (x) dx f (x) f (x) dx . a 0</p><p>2a a (c) f (x)dx f (x) f (2a x) dx 0 0</p><p> b b (d) f (x)dx f (a b x)dx a a</p><p>Exercise 7C</p><p> a a 1. * By proving that f (x)dx f (a x)dx (7c5) 0 0</p><p> sin x evaluate (a) 2 (cos x sin x)1997 dx (b) 2 dx 0 0 sin x cos x</p><p> a a 2 (a) Show that f (x) dx f (x) f (x) dx (7c6) a 0</p><p>(b) Using (a), or otherwise, evaluate the following integrals:</p><p> 1 4 d 2 (i) (iii) ln(x 1 x )dx 1 4 1 sin</p><p>Remind sin x,ex e x are odd functions.</p><p>1 cos x, are even functions. x2 1</p><p>Page 3 Definite Integrals Advanced Level Pure Mathematics Graph of an odd function Graph of an even function</p><p>P8 (i) If f (x) f (x) (Even Function)</p><p> a a then f (x) dx 2 f (x) dx a 0</p><p>(ii) If f (x) f (x) (Odd Function)</p><p> a then f (x) dx 0 a</p><p>Definition Let S be a subset of R , and f (x) be a real-valued function defined on S . f (x) is called a </p><p>PERIODIC function if and only if there is a positive real number T such that f (x T) f (x) , </p><p> for x S . The number T is called the PERIOD.</p><p>P9 If f (x) is periodic function, with period T i.e. f (x T) f (x)</p><p> T (a) f (x)dx f (x)dx T</p><p> T (b) f (x)dx f (x)dx 0 T</p><p>T T (c) f (x)dx f (x)dx 0</p><p> nT T (d) f (x) dx n f (x) dx for n Z 0 0</p><p>Theorem Cauchy-Inequality for Integration</p><p>If f (x) , g(x) are continuous function on [a,b] , then</p><p> b 2 b 2 b 2 f (x)g(x)dx f (x) dx g(x) dx a a a </p><p>Theorem Triangle Inequality for Integration</p><p> b b f (x) dx f (x) dx a a</p><p>Integration by Parts</p><p>Theorem Integration by Parts</p><p>Let u and v be two functions in x . If u'(x) and v'(x) are continuous on a,b, then</p><p>Page 4 Definite Integrals Advanced Level Pure Mathematics</p><p> b b b uv'dx uv vu'dx a a a</p><p> b b b or udv uv vdu a a a</p><p> sin kx * AL84II-1 (a) For any non-negative integer k, let uk dx . 0 sin x</p><p>Express uk 2 in terms of uk . </p><p>Hence, or otherwise, evaluate uk .</p><p> (b) For any non-negative integers m and n , let I(m,n) 2 cosm sin n dθ 0</p><p>(i) Show that if m 2 , then </p><p> m 1 I(m,n) = I(m 2, n 2) . n 1 (ii) Evaluate I(1,n) for n 0 .</p><p>(iii) Show that if n 2 , then </p><p> n 1 I(0,n) = I(0,n 2) . n (iv) Evaluate I(6,4) .</p><p> AL94II-11 For any non-negative integer n , let 4 n In tan x dx 0</p><p> n1 1 1 (a) (i) Show that In . n 1 4 n 1 4 </p><p>4x [ Note: You may assume without proof that x tan x for x [0, ] . ] 4</p><p> lim In (ii) Using (i), or otherwise, evaluate n .</p><p>1 (iii) Show that I I for n 2,3,4,. n n2 n 1</p><p> n (1)k 1 (b) For n 1,2,3, , let an . k 1 2k 1</p><p>(i) Using (a)(iii), or otherwise, express an in terms of I 2n .</p><p> lim an (ii) Evaluate n .</p><p>Page 5 Definite Integrals Advanced Level Pure Mathematics Continuity and Differentiability of a Definite Integral</p><p>Theorem Mean Value Theorem for Integral</p><p>If f (x) is continuous on [a,b] then there exists some c in [a,b] and </p><p> b f (x)dx f (c)(b a) a</p><p>Theorem Continuity of definite Integral</p><p> x If f (t) is continuous on a,band let A(x) f (t)dt x [a,b] then A(x) is continuous at a</p><p> each point x in a,b .</p><p>Theorem * Fundamental Theorem of Calculus</p><p> x Let f (t) be continuous on [a,b] and F(x) f (t)dt . Then F'(x) f (x) , x (a,b) a</p><p> g(x) Remark : H (x) f (t)dt H '(x) f (g(x)) g'(x) a</p><p>Example Let f : R R be a function which is twice-differentiable and with continuous second </p><p> x t derivative. Show that f (x) f (0) xf '(0) f ''(s)dsdt , x R . 0 0 </p><p> d x n * AL90II-5 (a) Evaluate f (t) dt , where f is continuous and n is a positive integer. dx 0</p><p>2 x 2 (b) If F(x) et dt , find F '(1). x3</p><p> x 1 t 2 1 AL97II-5(b) Evaluate lim 3 e dt 2 . x0 x 0 x </p><p>AL98II-2 Let f : R R be a continuous periodic function with period T .</p><p> d xT x (a) Evaluate f (t)dt f (t)dt dx 0 0 </p><p>Page 6 Definite Integrals Advanced Level Pure Mathematics</p><p> xT T (b) Using (a), or otherwise, show that f (t)dt f (t)dt for all x . x 0</p><p>Improper Integrals</p><p> b Definition A definite integral f (x)dx is called IMPROPER INTEGRAL if the interval [a,b] of a</p><p> integration is infinite, or if f (x) is not defined or not bounded at one or more points in [a,b].</p><p> 1 1 x 1 Example e dx , x 2 , tan xdx , dx are improper integral. e dx 0 2 0 0 x</p><p> b Definition (a) f (x)dx is defined as lim f (x)dx a b a</p><p> b b (b) f (x)dx is defined as lim f (x)dx a a</p><p> c (c) f (x)dx is defined as f (x)dx f (x)dx for any real number c . - c</p><p> c ℓ ( Or lim f (x)dx lim f (x)dx ) ℓ ℓ ℓc</p><p>(d) If f (x) is continuous except at a finite number of points, say a, x1, b where </p><p> b a x1 b , then f (x)dx is defined to be a</p><p> c ℓ d ℓ lim f (x)dx lim f (x)dx lim f (x)dx lim f (x)dx ℓ c ℓ d ℓa ℓx1 ℓx1 ℓb</p><p> for any c,d such that a c x1 d b .</p><p>Definition The improper integral is said to be Convergent or Divergent according to the improper </p><p> integral exists or not.</p><p>Theorem Let f (x) and g(x) be two real-valued function continuous for x a . If 0 f (x) g(x)</p><p> x a then the fact that f (x)dx diverges implies g(x)dx diverges and the fact that a a</p><p> g(x)dx converges implies that f (x)dx converges. a a</p><p>Page 7 Definite Integrals Advanced Level Pure Mathematics Example Determine whether the improper integrals are convergent or divergent.</p><p>0 a) xe x dx (p.109 7-45c) </p><p>2 dx b) 2 2 (p.112 7-50 b) 4 - x</p><p>1 dx c) (p.112 7-50 c) 1 x 2</p><p>Page 8</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages8 Page
-
File Size-