Compressible Flow with Shock Wave

Compressible Flow with Shock Wave

<p>ME 362 Compressible Flow with Shock Wave Page 1 of 4</p><p>Solution:</p><p>To show that a normal shock wave exists within the duct, we need to prove that </p><p>PE,exit < Pback < PA,exit</p><p> subsonic P/P A o</p><p>E 1 2 supersonic</p><p> throat exit x</p><p>2   0.05  x   A(x)  0.0021      0.05  </p><p> 2   0.05  0.1 2 At exit (x = 0.1m): Aexit  A(x  0.1)  0.0021     0.004 m   0.05  </p><p> 2    0.05  0.05  2 At throat (x = 0.05m): A  Athroat  A(x  0.05)  0.0021     0.002 m   0.05  </p><p>A 0.004 exit   2 A 0.002</p><p>For curve A:</p><p>From isentropic table (Table B.1):</p><p>A P exit exit  0.9395 at   2.0351 (subsonic) ~ 2  A Po</p><p> PA,exit  0.9395Po  939.5 kPa ME 362 Compressible Flow with Shock Wave Page 2 of 4</p><p>For curve E:</p><p>Before shock (isentropic, supersonic):</p><p>From isentropic table (Table B.1):</p><p>A at exit  2.0050 (supersonic) ~ 2  Ma  2.2 A 1</p><p>Across shock (nonisentropic):</p><p>From shock table (Table B.2):</p><p>P A o2  0.6281 2 at Ma1  2.2  and   1.5920 Po1 A1</p><p> 2 A1  Athroat  0.002 m</p><p>  2 A21.5920 A 1  1.5920  0.002  0.003184 m</p><p>After shock (isentropic, subsonic):</p><p>Aexit 0.004    1.2563 A2 0.003184</p><p>From isentropic table (Table B.1):</p><p>Aexit Pexit at   1.2403 (subsonic)   0.8082 A2 Po2 ~ 1.2563 P P P  exit  exit o2  0.8082 0.6281  0.5076 Po Po2 Po1</p><p> PE,exit  0.5076Po  507.6 kPa</p><p>PE,exit  507.6 kPa < Pback  650 kPa < PA,exit  939.5 kPa</p><p> Normal shock exists within the nozzle [Ans.] ME 362 Compressible Flow with Shock Wave Page 3 of 4</p><p>Iterative procedure for locating normal shock wave:</p><p> sonic subsonic 1 2 supersonic</p><p> throat x exit x shock</p><p>Before shock (isentropic, supersonic): at x = 0.075m:</p><p> 2   0.05  0.075  2 A1  Ashock  A(x  0.075)  0.0021     0.0025 m   0.05  </p><p>A 0.0025 1   1.25 A 0.002</p><p>From isentropic table (Table B.1):</p><p>A at 1  1.2502 (supersonic) ~ 1.25  Ma  1.6 A 1</p><p>Across shock (nonisentropic):</p><p>From shock table (Table B.2):</p><p>P A o2  0.8952 2 at Ma1  1.6  and   1.1171 Po1 A1</p><p>  2 A21.1171 A 1  1.1171  0.002  0.00223 m ME 362 Compressible Flow with Shock Wave Page 4 of 4</p><p>After shock (isentropic, subsonic):</p><p>Aexit 0.004    1.7937 A2 0.00223</p><p>From isentropic table (Table B.1):</p><p>Aexit Pexit at   1.8229 (subsonic) ~ 1.7937   0.9231 A2 Po2</p><p>Pexit Pexit Po2   0.9231 0.8952  0.8264  Pexit  0.8264Po  826.4 kPa [Ans.] Po Po2 Po1</p><p>Determine if correct shock position is upstream or downstream of x = 0.075 m:</p><p>Pexit826.4 kPa  P back  650 kPa  correct shock position > x = 0.075 m</p><p> correct shock position is further downstream [Ans.]</p><p>P /P P > P back o exit back sonic P = P P exit back back shock</p><p> x x x x throat shock exit x = 0.075m</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us