MAT 271 (FIPE) Test 3 Review Chapters 9, 10

MAT 271 (FIPE) Test 3 Review Chapters 9, 10

<p>MAT 271 (FIPE) Test 3 Review Chapters 9, 10</p><p>Sample Problems (not necessarily all inclusive)</p><p>A. Taylor Series</p><p>List the first 5 non-zero terms of the Taylor series for the functions in problems 1––4 about the given points. Then use the ratio test to determine the interval of convergence.</p><p>1 1. f x  ln1  x x  0 ans 2. f x  x  0 ans 1  x</p><p>1 3. f x  x 2 cos x x  0 ans 4. f x  x  2 ans x 2 1</p><p>5. Find the Taylor series of order 7 for f x  x about x  1 and use it to find a 10 digit approximation for 1.5 . ans</p><p>B. Geometric Series</p><p>1. A patient is given a 20 mg injection of a therapeutic drug. Each day, the patient’s body metabolizes 40% of the drug present. The patient is given a 20 mg injection of the drug each day. Determine the drug level in the patient’s body after 6 days. If the procedure is continued indefinitely, determine the amount of the drug level in the patient’s body. ans</p><p>12  9  6 3  5 1  2. Find the sum of the first 50 terms of the series 4 16 ans 3. Find the sum of the first 20 terms of the series 1 4  9  16 ans</p><p>4. If 47.90625  24  12  6    an , determine the value of n. ans</p><p>C. Convergence of Series, Intervals of Convergence Determine if the following series converge or diverge. State the test used and explain your reasoning. answers    n   2 1 2 1 1 2n  7 en 1.    2.  2 3.  n 4.  2 3 5.  3 n1 n2 nln n n1 3 1 n1 n n1 n</p><p>Determine the intervals of convergence</p><p> n  x 1 n 6.  7.  nx  2 n1 n n1 D. Fourier Series</p><p>1. Find the Fourier Series of orders ans 2. Find the Fourier Series of orders ans 4 and 8 for the function shown below. 2 and 4 for the function shown below.</p><p>Use F4 x to approximate f 1.5.</p><p>Possible Answers</p><p>A. 1 1 1 1 1. f := x x2 x3 x4 x5 1  x  1 2 3 4 5 , </p><p>1 3 5 35 63 g := 1 x x2 x3 x4 x5 1  x  1 2. 2 8 16 128 256 , </p><p>1 1 1 1 h := x2 x4 x6 x8 x10 3. 2 24 720 40320 , Converges for all x</p><p>1 2 1 2 11 3 227 4 , h1 := 3  3 ( x2 ) 3 ( x2 )  3 ( x2 )  3 ( x2 ) 1  x  3 4. 3 9 6 81 1944 </p><p>5.</p><p>1 1 1 1 5 7 h2 := x  x ( x1 )2 ( x1 )3 ( x1 )4 ( x1 )5 2 2 8 16 128 256 21 33  ( x1 )6 ( x1 )7 1024 2048 > h2(1.5); 1.224781036</p><p>B.</p><p>1. 28.6 mg, 30 mg 2. 6.857 3. 2870 4. 9</p><p>C. 1. Converges, Ratio test 2. Converges, Integral test</p><p> n   2  2 3. Converges, compare to   , geometric, r  4. Diverges, p-series, p  1 n1  3  3 5. Converges, p-series, p  1 6. 0  x  2 7. 1 x  3</p><p>D. 1  8 3  8 cos  x  cos  x  2  9 2  1. f := 1     4 2 2 ,</p><p>1  8 3  8 5  8 7  8 cos  x  cos  x  cos  x  cos  x  2  9 2  25 2  49 2  .4905251840 f := 1         8 2 2 2 2 , </p><p>1 sin(  x ) 1 sin( 2  x ) 1 sin(  x ) 1 sin( 2  x ) 1 sin( 3  x ) 1 sin( 4  x ) f :=   f :=     2. 2 2  2  , 4 2  2  3  4 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us