MAT 271 (FIPE) Test 3 Review Chapters 9, 10
Total Page:16
File Type:pdf, Size:1020Kb
MAT 271 (FIPE) Test 3 Review Chapters 9, 10
Sample Problems (not necessarily all inclusive)
A. Taylor Series
List the first 5 non-zero terms of the Taylor series for the functions in problems 1––4 about the given points. Then use the ratio test to determine the interval of convergence.
1 1. f x ln1 x x 0 ans 2. f x x 0 ans 1 x
1 3. f x x 2 cos x x 0 ans 4. f x x 2 ans x 2 1
5. Find the Taylor series of order 7 for f x x about x 1 and use it to find a 10 digit approximation for 1.5 . ans
B. Geometric Series
1. A patient is given a 20 mg injection of a therapeutic drug. Each day, the patient’s body metabolizes 40% of the drug present. The patient is given a 20 mg injection of the drug each day. Determine the drug level in the patient’s body after 6 days. If the procedure is continued indefinitely, determine the amount of the drug level in the patient’s body. ans
12 9 6 3 5 1 2. Find the sum of the first 50 terms of the series 4 16 ans 3. Find the sum of the first 20 terms of the series 1 4 9 16 ans
4. If 47.90625 24 12 6 an , determine the value of n. ans
C. Convergence of Series, Intervals of Convergence Determine if the following series converge or diverge. State the test used and explain your reasoning. answers n 2 1 2 1 1 2n 7 en 1. 2. 2 3. n 4. 2 3 5. 3 n1 n2 nln n n1 3 1 n1 n n1 n
Determine the intervals of convergence
n x 1 n 6. 7. nx 2 n1 n n1 D. Fourier Series
1. Find the Fourier Series of orders ans 2. Find the Fourier Series of orders ans 4 and 8 for the function shown below. 2 and 4 for the function shown below.
Use F4 x to approximate f 1.5.
Possible Answers
A. 1 1 1 1 1. f := x x2 x3 x4 x5 1 x 1 2 3 4 5 ,
1 3 5 35 63 g := 1 x x2 x3 x4 x5 1 x 1 2. 2 8 16 128 256 ,
1 1 1 1 h := x2 x4 x6 x8 x10 3. 2 24 720 40320 , Converges for all x
1 2 1 2 11 3 227 4 , h1 := 3 3 ( x2 ) 3 ( x2 ) 3 ( x2 ) 3 ( x2 ) 1 x 3 4. 3 9 6 81 1944
5.
1 1 1 1 5 7 h2 := x x ( x1 )2 ( x1 )3 ( x1 )4 ( x1 )5 2 2 8 16 128 256 21 33 ( x1 )6 ( x1 )7 1024 2048 > h2(1.5); 1.224781036
B.
1. 28.6 mg, 30 mg 2. 6.857 3. 2870 4. 9
C. 1. Converges, Ratio test 2. Converges, Integral test
n 2 2 3. Converges, compare to , geometric, r 4. Diverges, p-series, p 1 n1 3 3 5. Converges, p-series, p 1 6. 0 x 2 7. 1 x 3
D. 1 8 3 8 cos x cos x 2 9 2 1. f := 1 4 2 2 ,
1 8 3 8 5 8 7 8 cos x cos x cos x cos x 2 9 2 25 2 49 2 .4905251840 f := 1 8 2 2 2 2 ,
1 sin( x ) 1 sin( 2 x ) 1 sin( x ) 1 sin( 2 x ) 1 sin( 3 x ) 1 sin( 4 x ) f := f := 2. 2 2 2 , 4 2 2 3 4