<p> 1</p><p>Supplemental Section: Trigonometry</p><p>Angle Measurement</p><p>Angles can be measured in degrees.</p><p>Counterclockwise Angles Clockwise Angles y y</p><p> x x</p><p>Important Degree Relationships y 1 revolution = 3600 3 revolution = 2700 4 1 revolution = 1800 2 1 revolution = 900 4 x</p><p>Angles can also be measured in radians. 2</p><p>Consider the unit circle y</p><p> x</p><p>Important Radian Relationships y 1 revolution = 2 radians 3 3 revolution = radians 4 2 1 revolution = radians 2 1 revolution = radians 4 2 x 3</p><p>Example 1: Draw, in standard position, the angle 3300</p><p>Solution:</p><p>█</p><p>5 Example 2: Draw, in standard position, the angle . 4</p><p>Solution:</p><p>█ 4</p><p>Angle Measurement Conversions</p><p>Formula for converting from degree to radian measure</p><p> Radian measure (Degree measure) 180 </p><p>Formula for converting from degree to radian measure</p><p>180 Degree measure (Radian measure) </p><p>Example 3: Convert 1200 from degrees to radians.</p><p>Solution:</p><p>█</p><p>7 Example 4: Convert from radians to degrees. 3</p><p>Solution: Using the formula 180 Degree measure (Radian measure) we obtain the result</p><p>7 180 1260 Degree measure 4200 3 3</p><p>█ 5 6</p><p>The Sine and Cosine Functions</p><p>We can define the cosine and sine of an angle in radians, denoted as cos and sin , as the x and y coordinates respectively of a point P on the unit circle that is determined by the angle .</p><p>Consider the unit circle y</p><p> x</p><p>Sine and Cosine of Basic Angle Values</p><p> Degrees Radians cos sin 0 0 30 6 45 4 60 3 90 2 180 270 3 2 360 2 7</p><p>Note: If we know the cosine and sine values for an angle in the first quadrant, we can determine the sine and cosine of related angles in other quadrants.</p><p>Sign Diagram for Cosine and Sine Values</p><p> y</p><p> x 8</p><p>4 Example 5: Compute the exact values of the sine and cosine for the angle 3</p><p>Solution:</p><p>█</p><p>11 Example 6: Compute the exact values of the sine and cosine for the angle . 4</p><p>Solution:</p><p>█ 9</p><p>Other Trigonometric Functions</p><p>Tangent: tan Secant: sec </p><p>Cosecant: csc Cotangent: cot </p><p>11 Example 7: Find the exact values of the six trigonometric functions for the angle . 6</p><p>Solution:</p><p>█ 10 11</p><p>Note: sin 2 (sin )2 , cos2 (cos )2</p><p>Basic Trigonometric Identities</p><p>Pythagorean Identities Double Angle Formula 1. sin 2 cos2 1 sin 2 2sin cos 2. tan 2 1 sec2 3. cot 2 1 csc2 </p><p>Example 8: Find the values of x in the interval [0,2 ] that satisfy the equation sin 2x sin x .</p><p>Solution: We solve the equation using the following steps:</p><p> sin 2x sin x 2sin x cos x sin x (Re place left hand side with sin 2x 2sin x cos x) 2sin x cos x sin x 0 (Subtract sin x from both sides) sin x(2cos x 1) 0 (Factor sin x) sin x 0, 2cos x 1 0 (Set each factor equal to zero) sin x 0, 2cos x 1 (Solve for cos x) 1 sin x 0, cos x 2</p><p>1 In the interval [0,2 ], sin x 0 when x 0, , 2 . In the interval [0,2 ], cos x when 2 5 x , . Thus the five solutions are 3 3</p><p> 5 x 0, , , , 2 3 3</p><p>█ 12</p><p>Graphs of Sine and Cosine</p><p>Period – distance on the x axis required for a trigonometric function to repeat its output values.</p><p>The period of f (x) sin x and f (x) cos x is 2 .</p><p>Example 9: Graph f (x) sin x</p><p>Solution: The graph can be plotted using the following Maple command:</p><p>> plot(sin(x), x = -4*Pi..4*Pi, y = -2..2, color = red, thickness = 2);</p><p>█ 13</p><p>Example 10: Graph f (x) cos x</p><p>Solution: The graph can be plotted using the following Maple command:</p><p>> plot(cos(x), x = -4*Pi..4*Pi, y = -2..2, color = red, thickness = 2);</p><p>█ 14</p><p>Graph of the Tangent Function</p><p>Period of the tangent function is radians. The vertical asymptotes of the tangent function sin x f (x) are the values of x where cos x 0 , that is the odd multiples of , cos x 2 3 3 , , , , . 2 2 2 2</p><p>Example 11: Graph f (x) tan x .</p><p>Solution: The graph is given by the following:</p><p>█ 15</p><p>Practice Problems</p><p>1. Convert from degrees to radians. a. 2100 c. 90 b. 3150 d. 360</p><p>2. Convert from radians to degrees. 3 a. 4 c. 8 7 8 b. d. 2 3</p><p>3. Draw, in standard position, the angle whose measure is given. 3 a. 3150 c. rad 4 7 b. rad d. 3 rad 3</p><p>4. Find the exact trigonometric ratios for the angle whose radian measure is given. 3 4 a. c. 4 3 11 b. d. 6</p><p>5. Find all values of x in the interval [0, 2 ] that satisfy the equation. a. 2cos x 1 0 b. sin 2x cos x</p><p>Selected Answers</p><p>7 7 1. a. , b. 6 4 2. a. 7200 , b. 6300</p><p>3 2 3 2 3 3 3 3 4. a. cos ,sin , tan 1, sec 2 , csc 2 , cot 1 4 2 4 2 4 4 4 4 b. cos 1,sin 0 , tan 0 , sec 1, csc : undefined , cot : undefined</p><p> 5 5. x , 3 3</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages15 Page
-
File Size-