Supplemental Section: Trigonometry

Supplemental Section: Trigonometry

<p> 1</p><p>Supplemental Section: Trigonometry</p><p>Angle Measurement</p><p>Angles can be measured in degrees.</p><p>Counterclockwise Angles Clockwise Angles y y</p><p> x x</p><p>Important Degree Relationships y 1 revolution = 3600 3 revolution = 2700 4 1 revolution = 1800 2 1 revolution = 900 4 x</p><p>Angles can also be measured in radians. 2</p><p>Consider the unit circle y</p><p> x</p><p>Important Radian Relationships y 1 revolution = 2 radians 3 3 revolution = radians 4 2 1 revolution =  radians 2 1  revolution = radians 4 2 x 3</p><p>Example 1: Draw, in standard position, the angle 3300</p><p>Solution:</p><p>█</p><p>5 Example 2: Draw, in standard position, the angle . 4</p><p>Solution:</p><p>█ 4</p><p>Angle Measurement Conversions</p><p>Formula for converting from degree to radian measure</p><p>   Radian measure  (Degree measure)  180 </p><p>Formula for converting from degree to radian measure</p><p>180  Degree measure  (Radian measure)    </p><p>Example 3: Convert 1200 from degrees to radians.</p><p>Solution:</p><p>█</p><p>7 Example 4: Convert  from radians to degrees. 3</p><p>Solution: Using the formula 180  Degree measure  (Radian measure)     we obtain the result</p><p>7 180  1260 Degree measure         4200 3    3</p><p>█ 5 6</p><p>The Sine and Cosine Functions</p><p>We can define the cosine and sine of an angle  in radians, denoted as cos and sin , as the x and y coordinates respectively of a point P on the unit circle that is determined by the angle  .</p><p>Consider the unit circle y</p><p> x</p><p>Sine and Cosine of Basic Angle Values</p><p> Degrees  Radians cos sin 0 0 30  6 45  4 60  3 90  2 180  270 3 2 360 2 7</p><p>Note: If we know the cosine and sine values for an angle  in the first quadrant, we can determine the sine and cosine of related angles in other quadrants.</p><p>Sign Diagram for Cosine and Sine Values</p><p> y</p><p> x 8</p><p>4 Example 5: Compute the exact values of the sine and cosine for the angle 3</p><p>Solution:</p><p>█</p><p>11 Example 6: Compute the exact values of the sine and cosine for the angle . 4</p><p>Solution:</p><p>█ 9</p><p>Other Trigonometric Functions</p><p>Tangent: tan  Secant: sec </p><p>Cosecant: csc  Cotangent: cot </p><p>11 Example 7: Find the exact values of the six trigonometric functions for the angle . 6</p><p>Solution:</p><p>█ 10 11</p><p>Note: sin 2   (sin )2 , cos2   (cos )2</p><p>Basic Trigonometric Identities</p><p>Pythagorean Identities Double Angle Formula 1. sin 2   cos2   1 sin 2  2sin cos 2. tan 2  1  sec2  3. cot 2  1  csc2 </p><p>Example 8: Find the values of x in the interval [0,2 ] that satisfy the equation sin 2x  sin x .</p><p>Solution: We solve the equation using the following steps:</p><p> sin 2x  sin x 2sin x cos x  sin x (Re place left hand side with sin 2x  2sin x cos x) 2sin x cos x  sin x  0 (Subtract sin x from both sides) sin x(2cos x  1)  0 (Factor sin x) sin x  0, 2cos x  1  0 (Set each factor equal to zero) sin x  0, 2cos x  1 (Solve for cos x) 1 sin x  0, cos x  2</p><p>1 In the interval [0,2 ], sin x  0 when x  0,  , 2 . In the interval [0,2 ], cos x  when 2  5 x  , . Thus the five solutions are 3 3</p><p> 5 x  0, , , , 2 3 3</p><p>█ 12</p><p>Graphs of Sine and Cosine</p><p>Period – distance on the x axis required for a trigonometric function to repeat its output values.</p><p>The period of f (x)  sin x and f (x)  cos x is 2 .</p><p>Example 9: Graph f (x)  sin x</p><p>Solution: The graph can be plotted using the following Maple command:</p><p>> plot(sin(x), x = -4*Pi..4*Pi, y = -2..2, color = red, thickness = 2);</p><p>█ 13</p><p>Example 10: Graph f (x)  cos x</p><p>Solution: The graph can be plotted using the following Maple command:</p><p>> plot(cos(x), x = -4*Pi..4*Pi, y = -2..2, color = red, thickness = 2);</p><p>█ 14</p><p>Graph of the Tangent Function</p><p>Period of the tangent function is  radians. The vertical asymptotes of the tangent function sin x  f (x)  are the values of x where cos x  0 , that is the odd multiples of , cos x 2 3   3   , , , , . 2 2 2 2</p><p>Example 11: Graph f (x)  tan x .</p><p>Solution: The graph is given by the following:</p><p>█ 15</p><p>Practice Problems</p><p>1. Convert from degrees to radians. a. 2100 c. 90 b.  3150 d. 360</p><p>2. Convert from radians to degrees. 3 a. 4 c.  8 7 8 b.  d. 2 3</p><p>3. Draw, in standard position, the angle whose measure is given. 3 a.  3150 c.  rad 4 7 b. rad d.  3 rad 3</p><p>4. Find the exact trigonometric ratios for the angle whose radian measure is given. 3 4 a. c. 4 3 11 b.  d. 6</p><p>5. Find all values of x in the interval [0, 2 ] that satisfy the equation. a. 2cos x 1  0 b. sin 2x  cos x</p><p>Selected Answers</p><p>7 7 1. a. , b.  6 4 2. a. 7200 , b.  6300</p><p>3 2 3 2 3 3 3 3 4. a. cos   ,sin  , tan  1, sec   2 , csc  2 , cot  1 4 2 4 2 4 4 4 4 b. cos  1,sin  0 , tan  0 , sec  1, csc : undefined , cot : undefined</p><p> 5 5. x  , 3 3</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us