<p>Supplementary Figure 1: Long term appearance of accepted lung grafts. (a) Gross appearance of Balb/c lung allograft 13 months after transplantation into immunosuppressed (MR1, CTLA4-Ig) B6 recipient (Tx depicts transplanted graft). (b)</p><p>Histological appearance of native B6 right lung and (c) BALT in Balb/c allograft 7 months after transplantation into immunosuppressed (MR1, CTLA4-Ig) B6 recipient</p><p>(100x). (d) represents a zoomed view of BALT shown in (c) (200x). </p><p>Supplementary Figure 2: Appearance of immunosuppressed heart grafts. Two-photon image of dendritic cells in (a) heart explants derived from resting B6 CD11c + EYFP mice and (b) Balb/c heart graft explants 30 days after transplantation into immunosuppressed</p><p>(MR1, CTLA4-Ig) B6 CD11c+ EYFP recipients. Scale bar = 20 µm. (c) Immunostaining</p><p>(100x) for PNAd for B6 heart grafts 30 days after transplantation into immunosuppressed (MR1, CTLA4-Ig) CBA hosts.</p><p>Supplementary Figure 3: PD-L1 expression on dendritic cells in BALT of accepted lung allografts. (a) Flow cytometric analysis of PD-L1 expression on myeloid dendritic cells</p><p>(CD11c+CD11bhi) in accepted B6 lung allografts 30 days after transplantation into immunosuppressed (MR1, CTLA4-Ig) CBA recipients (n=3) Shaded histogram depicts staining with isotype control antibody. (b) Immunofluorescent staining showing expression of PD-L1 (red) on CD11c+ dendritic cells (green) within BALT of accepted</p><p>Balb/c lung allografts 30 days after transplantation into immunosuppressed (MR1,</p><p>CTLA4-Ig) B6 CD11c-EYFP hosts. </p><p>1 Supplementary Movie 1: Intravital two-photon imaging of dendritic cells (green) within</p><p>BALT in accepted Balb/c lung grafts 30 days after transplantation into immunosuppressed (MR1 250 µg i.p. day 0, CTLA4-Ig 200 µg i.p. day 2) B6 CD11c+</p><p>EYFP recipients. Relative time is displayed in hrs:min:sec:msec.</p><p>Supplementary Movie 2: Intravital two-photon imaging of adoptively transferred</p><p>CMTMR-labeled B6 T lymphocytes (yellow) with dendritic cells (green) within BALT in accepted Balb/c lung grafts 30 days after transplantation into immunosuppressed (MR1</p><p>250 µg i.p. day 0, CTLA4-Ig 200 µg i.p. day 2) B6 CD11c + EYFP recipients. Collagen and alveolar macrophages appear blue (second harmonic generation) and blood vessels appear red. Relative time is displayed in hrs:min:sec:msec.</p><p>2 References</p><p>1. Kreisel, D., et al. Short- and long-term outcomes of 1000 adult lung transplant recipients</p><p> at a single center. J Thorac Cardiovasc Surg 141, 215-222 (2011).</p><p>2. Khalifah, A.P., et al. Minimal acute rejection after lung transplantation: a risk for</p><p> bronchiolitis obliterans syndrome. Am J Transplant 5, 2022-2030 (2005).</p><p>3. Prop, J., Tazelaar, H.D. & Billingham, M.E. Rejection of combined heart-lung transplants</p><p> in rats. Function and pathology. The American Journal of Pathology 127, 97-105 (1987).</p><p>4. McGregor, C.G., et al. Combined heart-lung transplantation for end-stage Eisenmenger's</p><p> syndrome. J Thorac Cardiovasc Surg 91, 443-450 (1986).</p><p>5. Gelman, A.E., et al. Cutting edge: Acute lung allograft rejection is independent of</p><p> secondary lymphoid organs. J Immunol 182, 3969-3973 (2009).</p><p>6. Lakkis, F.G., Arakelov, A., Konieczny, B.T. & Inoue, Y. Immunologic 'ignorance' of</p><p> vascularized organ transplants in the absence of secondary lymphoid tissue. Nat Med 6,</p><p>686-688 (2000).</p><p>7. Lechler, R.I. & Batchelor, J.R. Immunogenicity of retransplanted rat kidney allografts.</p><p>Effect of inducing chimerism in the first recipient and quantitative studies on</p><p> immunosuppression of the second recipient. J Exp Med 156, 1835-1841 (1982).</p><p>8. Graca, L., Cobbold, S.P. & Waldmann, H. Identification of regulatory T cells in tolerated</p><p> allografts. J Exp Med 195, 1641-1646 (2002).</p><p>9. Marui, T., et al. Histologic damage of lung allografts according to magnitude of acute</p><p> rejection in the re-isotransplant model. J Heart Lung Transplant 27, 642-648 (2008).</p><p>3 10. Tullius, S.G., et al. Contribution of early acute rejection episodes to chronic rejection in a</p><p> rat kidney retransplantation model. Kidney Int 53, 465-472 (1998).</p><p>11. Izutani, H., et al. Evidence that graft coronary arteriosclerosis begins in the early phase</p><p> after transplantation and progresses without chronic immunoreaction. Histopathological</p><p> analysis using a retransplantation model. Transplantation 60, 1073-1079 (1995).</p><p>12. Gelman, A.E., et al. CD4+ T lymphocytes are not necessary for the acute rejection of</p><p> vascularized mouse lung transplants. J Immunol 180, 4754-4762 (2008).</p><p>13. Okazaki, M., et al. Maintenance of airway epithelium in acutely rejected orthotopic</p><p> vascularized mouse lung transplants. Am J Respir Cell Mol Biol 37, 625-630 (2007).</p><p>14. Okazaki, M., et al. Costimulatory blockade-mediated lung allograft acceptance is</p><p> abrogated by overexpression of Bcl-2 in the recipient. Transplant Proc 41, 385-387</p><p>(2009).</p><p>15. Moyron-Quiroz, J.E., et al. Role of inducible bronchus associated lymphoid tissue</p><p>(iBALT) in respiratory immunity. Nature Medicine 10, 927-934 (2004).</p><p>16. Rangel-Moreno, J., et al. Inducible bronchus-associated lymphoid tissue (iBALT) in</p><p> patients with pulmonary complications of rheumatoid arthritis. The Journal of Clinical</p><p>Investigation 116, 3183-3194 (2006).</p><p>17. Randall, T.D. Bronchus-associated lymphoid tissue (BALT) structure and function.</p><p>Advances in Immunology 107, 187-241 (2010).</p><p>18. Kreisel, D., et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil</p><p> extravasation during pulmonary inflammation. Proc Natl Acad Sci U S A 107, 18073-</p><p>18078 (2010).</p><p>4 19. Lindquist, R.L., et al. Visualizing dendritic cell networks in vivo. Nat Immunol 5, 1243-</p><p>1250 (2004).</p><p>20. Gelman, A.E., et al. CCR2 regulates monocyte recruitment as well as CD4 T1</p><p> allorecognition after lung transplantation. Am J Transplant 10, 1189-1199 (2010).</p><p>21. Samy, E.T., Wheeler, K.M., Roper, R.J., Teuscher, C. & Tung, K.S. Cutting edge:</p><p>Autoimmune disease in day 3 thymectomized mice is actively controlled by endogenous</p><p> disease-specific regulatory T cells. J Immunol 180, 4366-4370 (2008).</p><p>22. Setiady, Y.Y., Coccia, J.A. & Park, P.U. In vivo depletion of CD4+FOXP3+ Treg cells by</p><p> the PC61 anti-CD25 monoclonal antibody is mediated by FcgammaRIII+ phagocytes.</p><p>Eur J Immunol 40, 780-786 (2010).</p><p>23. Loebbermann, J., et al. Regulatory T cells expressing granzyme B play a critical role in</p><p> controlling lung inflammation during acute viral infection. Mucosal Immunology 5, 161-</p><p>172 (2012).</p><p>24. Zhang, N., et al. Regulatory T cells sequentially migrate from inflamed tissues to</p><p> draining lymph nodes to suppress the alloimmune response. Immunity 30, 458-469</p><p>(2009).</p><p>25. Constant, S.L., et al. Resident lung antigen-presenting cells have the capacity to promote</p><p>Th2 T cell differentiation in situ. J Clin Invest 110, 1441-1448 (2002).</p><p>26. Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases.</p><p>Nat Rev Immunol 6, 205-217 (2006).</p><p>27. Grant, A.J., et al. Hepatic expression of secondary lymphoid chemokine (CCL21)</p><p> promotes the development of portal-associated lymphoid tissue in chronic inflammatory</p><p> liver disease. The American Journal of Pathology 160, 1445-1455 (2002).</p><p>5 28. Barone, F., et al. Association of CXCL13 and CCL21 expression with the progressive</p><p> organization of lymphoid-like structures in Sjogren's syndrome. Arthritis Rheum 52,</p><p>1773-1784 (2005).</p><p>29. Thaunat, O., et al. Lymphoid neogenesis in chronic rejection: evidence for a local</p><p> humoral alloimmune response. Proceedings of the National Academy of Sciences of the</p><p>United States of America 102, 14723-14728 (2005).</p><p>30. Wang, J., et al. Donor lymphoid organs are a major site of alloreactive T-cell priming</p><p> following intestinal transplantation. Am J Transplant 6, 2563-2571 (2006).</p><p>31. Baddoura, F.K., et al. Lymphoid neogenesis in murine cardiac allografts undergoing</p><p> chronic rejection. Am J Transplant 5, 510-516 (2005).</p><p>32. Nasr, I.W., et al. Tertiary lymphoid tissues generate effector and memory T cells that</p><p> lead to allograft rejection. Am J Transplant 7, 1071-1079 (2007).</p><p>33. Brown, K., Sacks, S.H. & Wong, W. Tertiary lymphoid organs in renal allografts can be</p><p> associated with donor-specific tolerance rather than rejection. European Journal of</p><p>Immunology 41, 89-96 (2011).</p><p>34. Sminia, T., van der Brugge-Gamelkoorn, G.J. & Jeurissen, S.H. Structure and function of</p><p> bronchus-associated lymphoid tissue (BALT). Critical Reviews in Immunology 9, 119-</p><p>150 (1989).</p><p>35. Moyron-Quiroz, J.E., et al. Persistence and responsiveness of immunologic memory in</p><p> the absence of secondary lymphoid organs. Immunity 25, 643-654 (2006).</p><p>36. van der Strate, B.W., et al. Cigarette smoke-induced emphysema: A role for the B cell?</p><p>Am J Respir Crit Care Med 173, 751-758 (2006).</p><p>6 37. Sato, M., et al. The role of intrapulmonary de novo lymphoid tissue in obliterative</p><p> bronchiolitis after lung transplantation. J Immunol 182, 7307-7316 (2009).</p><p>38. Hasegawa, T., Iacono, A. & Yousem, S.A. The significance of bronchus-associated</p><p> lymphoid tissue in human lung transplantation: is there an association with acute and</p><p> chronic rejection? Transplantation 67, 381-385 (1999).</p><p>39. Francisco, L.M., et al. PD-L1 regulates the development, maintenance, and function of</p><p> induced regulatory T cells. J Exp Med 206, 3015-3029 (2009).</p><p>40. Krupnick, A.S., et al. Murine vascular endothelium activates and induces the generation</p><p> of allogeneic CD4+25+Foxp3+ regulatory T cells. J Immunol 175, 6265-6270 (2005).</p><p>41. Wolfle, S.J., et al. PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur</p><p>J Immunol 41, 413-424 (2011).</p><p>42. Halle, S., et al. Induced bronchus-associated lymphoid tissue serves as a general priming</p><p> site for T cells and is maintained by dendritic cells. J Exp Med 206, 2593-2601 (2009).</p><p>43. Mempel, T.R., Henrickson, S.E. & Von Andrian, U.H. T-cell priming by dendritic cells</p><p> in lymph nodes occurs in three distinct phases. Nature 427, 154-159 (2004).</p><p>44. Miller, M.J., Safrina, O., Parker, I. & Cahalan, M.D. Imaging the single cell dynamics of</p><p>CD4+ T cell activation by dendritic cells in lymph nodes. The Journal of Experimental</p><p>Medicine 200, 847-856 (2004).</p><p>45. Rangel-Moreno, J., Moyron-Quiroz, J.E., Hartson, L., Kusser, K. & Randall, T.D.</p><p>Pulmonary expression of CXC chemokine ligand 13, CC chemokine ligand 19, and CC</p><p> chemokine ligand 21 is essential for local immunity to influenza. Proceedings of the</p><p>National Academy of Sciences of the United States of America 104, 10577-10582 (2007).</p><p>7 46. Okazaki, M., et al. A mouse model of orthotopic vascularized aerated lung</p><p> transplantation. Am J Transplant 7, 1672-1679 (2007).</p><p>47. Krupnick, A.S., et al. Orthotopic mouse lung transplantation as experimental</p><p> methodology to study transplant and tumor biology. Nat Protoc 4, 86-93 (2009).</p><p>48. Tomita, Y., et al. Improved technique of heterotopic cervical heart transplantation in</p><p> mice. Transplantation 64, 1598-1601 (1997).</p><p>49. Zinselmeyer, B.H., et al. Chapter 16. Two-photon microscopy and multidimensional</p><p> analysis of cell dynamics. Methods Enzymol 461, 349-378 (2009).</p><p>8</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages8 Page
-
File Size-