Supplementary Table 1: a Representative Sample of CNV Callers from WGS Data

Supplementary Table 1: a Representative Sample of CNV Callers from WGS Data

<p>Supplementary Table 1: A representative sample of CNV callers from WGS data CNV caller RD PE SR AS Other SVs detected Ref AGE X TDP, INV [1] BIC-Seq X [2] BreakDancer X INV, TRL [3] CLEVER X TDP, INV [4] cn.MOPS X [5] CNVeM X [6] CNVer X X [7] CNVnator X [8] CNVrd2 X [9] CNV-Seq X [10] Cortex X INV [11] CREST X INV, TRL [12] DELLY X X INV, TDP, TRL [13] ERDS X [14] GASV-Pro X X [15] Genome STRiP X [16] GROM-RD X [17] Hydra-Multi X INV [18] JointSLM X [19] LUMPY X X X INV, TDP, TRL [20] Magnolya X [21] mrCaNaVar X TDP [22] NovelSeq X [23] PEMer X INV, TDP, TRL [24] Pindel X [25] PRISM X X TDP, INV [26] RDXplorer X [27] readDepth X [28] SegSeq X [29] Socrates X INV, TDP, TRL [30] SoftSearch X X INV, TDP, TRL [31] SoftSV X X INV, TDP, TRL [32] SVDetect X INV, TDP, TRL [33] SVSeq X X [34] TIGRA X INV, TDP, TRL [35] VariationHunter X INV [36] RD = Read Depth; PE = Paired End Mapping; SR = Split Read; AS = Assembly; INV = Inversion; TDP = Tandem Duplication; TRL = Translocation.</p><p>Supplemental References 1. Abyzov A, Gerstein M. AGE: defining breakpoints of genomic structural variants at single- nucleotide resolution, through optimal alignments with gap excision. Bioinformatics. 2011;27(5):595-603. doi:10.1093/bioinformatics/btq713. 2. Xi R, Hadjipanayis AG, Luquette LJ, Kim TM, Lee E, Zhang J et al. Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion. Proc Natl Acad Sci U S A. 2011;108(46):E1128-36. doi:10.1073/pnas.1110574108. 3. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods. 2009;6(9):677-81. doi:10.1038/nmeth.1363. 4. Marschall T, Costa IG, Canzar S, Bauer M, Klau GW, Schliep A et al. CLEVER: clique- enumerating variant finder. Bioinformatics. 2012;28(22):2875-82. doi:10.1093/bioinformatics/bts566. 5. Klambauer G, Schwarzbauer K, Mayr A, Clevert DA, Mitterecker A, Bodenhofer U et al. cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res. 2012;40(9):e69. doi:10.1093/nar/gks003. 6. Wang Z, Hormozdiari F, Yang WY, Halperin E, Eskin E. CNVeM: copy number variation detection using uncertainty of read mapping. J Comput Biol. 2013;20(3):224-36. doi:10.1089/cmb.2012.0258. 7. Medvedev P, Fiume M, Dzamba M, Smith T, Brudno M. Detecting copy number variation with mated short reads. Genome Res. 2010;20(11):1613-22. doi:10.1101/gr.106344.110. 8. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21(6):974-84. doi:10.1101/gr.114876.110. 9. Nguyen HT, Merriman TR, Black MA. The CNVrd2 package: measurement of copy number at complex loci using high-throughput sequencing data. Front Genet. 2014;5:248. doi:10.3389/fgene.2014.00248. 10. Xie C, Tammi MT. CNV-seq, a new method to detect copy number variation using high- throughput sequencing. BMC Bioinformatics. 2009;10:80. doi:10.1186/1471-2105-10-80. 11. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of variants using colored de Bruijn graphs. Nat Genet. 2012;44(2):226-32. doi:10.1038/ng.1028. 12. Wang J, Mullighan CG, Easton J, Roberts S, Heatley SL, Ma J et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat Methods. 2011;8(8):652- 4. doi:10.1038/nmeth.1628. 13. Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28(18):i333-i9. doi:10.1093/bioinformatics/bts378. 14. Zhu M, Need AC, Han Y, Ge D, Maia JM, Zhu Q et al. Using ERDS to infer copy-number variants in high-coverage genomes. Am J Hum Genet. 2012;91(3):408-21. doi:10.1016/j.ajhg.2012.07.004. 15. Sindi SS, Onal S, Peng LC, Wu HT, Raphael BJ. An integrative probabilistic model for identification of structural variation in sequencing data. Genome Biol. 2012;13(3):R22. doi:10.1186/gb-2012-13-3-r22. 16. Handsaker RE, Korn JM, Nemesh J, McCarroll SA. Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. Nat Genet. 2011;43(3):269-76. doi:10.1038/ng.768. 17. Smith SD, Kawash JK, Grigoriev A. GROM-RD: resolving genomic biases to improve read depth detection of copy number variants. PeerJ. 2015;3:e836. doi:10.7717/peerj.836. 18. Lindberg MR, Hall IM, Quinlan AR. Population-based structural variation discovery with Hydra-Multi. Bioinformatics. 2015;31(8):1286-9. doi:10.1093/bioinformatics/btu771. 19. Magi A, Benelli M, Yoon S, Roviello F, Torricelli F. Detecting common copy number variants in high-throughput sequencing data by using JointSLM algorithm. Nucleic Acids Res. 2011;39(10):e65. doi:10.1093/nar/gkr068. 20. Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 2014;15(6):R84. doi:10.1186/gb-2014-15-6-r84. 21. Nijkamp JF, van den Broek MA, Geertman JM, Reinders MJ, Daran JM, de Ridder D. De novo detection of copy number variation by co-assembly. Bioinformatics. 2012;28(24):3195-202. doi:10.1093/bioinformatics/bts601. 22. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F et al. Personalized copy number and segmental duplication maps using next-generation sequencing. Nat Genet. 2009;41(10):1061-7. doi:10.1038/ng.437. 23. Hajirasouliha I, Hormozdiari F, Alkan C, Kidd JM, Birol I, Eichler EE et al. Detection and characterization of novel sequence insertions using paired-end next-generation sequencing. Bioinformatics. 2010;26(10):1277-83. doi:10.1093/bioinformatics/btq152. 24. Korbel JO, Abyzov A, Mu XJ, Carriero N, Cayting P, Zhang Z et al. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol. 2009;10(2):R23. doi:10.1186/gb-2009-10-2- r23. 25. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865-71. doi:10.1093/bioinformatics/btp394. 26. Jiang Y, Wang Y, Brudno M. PRISM: pair-read informed split-read mapping for base-pair level detection of insertion, deletion and structural variants. Bioinformatics. 2012;28(20):2576- 83. doi:10.1093/bioinformatics/bts484. 27. Yoon S, Xuan Z, Makarov V, Ye K, Sebat J. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res. 2009;19(9):1586-92. doi:10.1101/gr.092981.109. 28. Miller CA, Hampton O, Coarfa C, Milosavljevic A. ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads. PLoS One. 2011;6(1):e16327. doi:10.1371/journal.pone.0016327. 29. Chiang DY, Getz G, Jaffe DB, O'Kelly MJ, Zhao X, Carter SL et al. High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat Methods. 2009;6(1):99-103. doi:10.1038/nmeth.1276. 30. Schroder J, Hsu A, Boyle SE, Macintyre G, Cmero M, Tothill RW et al. Socrates: identification of genomic rearrangements in tumour genomes by re-aligning soft clipped reads. Bioinformatics. 2014. doi:10.1093/bioinformatics/btt767. 31. Hart SN, Sarangi V, Moore R, Baheti S, Bhavsar JD, Couch FJ et al. SoftSearch: integration of multiple sequence features to identify breakpoints of structural variations. PLoS One. 2013;8(12):e83356. doi:10.1371/journal.pone.0083356. 32. Bartenhagen C, Dugas M. Robust and exact structural variation detection with paired-end and soft-clipped alignments: SoftSV compared with eight algorithms. Brief Bioinform. 2016;17(1):51-62. doi:10.1093/bib/bbv028. 33. Zeitouni B, Boeva V, Janoueix-Lerosey I, Loeillet S, Legoix-ne P, Nicolas A et al. SVDetect: a tool to identify genomic structural variations from paired-end and mate-pair sequencing data. Bioinformatics. 2010;26(15):1895-6. doi:10.1093/bioinformatics/btq293. 34. Zhang J, Wu Y. SVseq: an approach for detecting exact breakpoints of deletions with low- coverage sequence data. Bioinformatics. 2011;27(23):3228-34. doi:10.1093/bioinformatics/btr563. 35. Chen K, Chen L, Fan X, Wallis J, Ding L, Weinstock G. TIGRA: a targeted iterative graph routing assembler for breakpoint assembly. Genome Res. 2014;24(2):310-7. doi:10.1101/gr.162883.113. 36. Hormozdiari F, Hajirasouliha I, Dao P, Hach F, Yorukoglu D, Alkan C et al. Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery. Bioinformatics. 2010;26(12):i350-7. doi:10.1093/bioinformatics/btq216.</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us