<p> 1 Geometry Notes: Chapter 6 Notes #30: Properties of Parallelograms (Section 6.2)</p><p>Both pairs of opposite sides of a parallelogram are ______(Definition of a Parallelogram) Parallelograms are shown; solve for the variables: ______angles are congruent 1.) </p><p> y 20 ______angles are congruent 30</p><p>______(consecutive) angles are supplementary x</p><p>2.) 3.)</p><p> x x y y 60</p><p> z 55 20 20 100 z </p><p>Both pairs of opposite sides of a parallelogram are ______</p><p>Parallelograms are shown; solve for the variables: 4.) 5.) a 2a - b</p><p>7 b a + 3b 6 5 4</p><p>5</p><p>Both pairs of opposite angles of a parallelogram are ______</p><p>Parallelograms are shown; solve for the variables: 6.) 7.)</p><p> y x x y z</p><p>120 100 30 2</p><p>Diagonals of a parallelogram ______</p><p>Parallelograms are shown; solve for the variables: 8.) 9.)</p><p> a + 4 9 6 7</p><p>2b - 1 8 a b</p><p>For #10-11, draw a diagram, define your variable, write an equation, and solve. 10.) The perimeter of YABCD is 62in. 11.) In YWXYZ one angle is 8 times the size of AB is 5in longer than BC. Find the lengths another. Find the measures of the angles. of all four sides of the parallelogram.</p><p>If a transversal is cut into @ segments by parallel lines, then all transversals will be cut into @ segments by these parallel lines.</p><p>12.) If AB = 4, then BC = ____ and AD = ____ A E</p><p>B F 13.) If DC = 2x -1 and AC = 8x – 6, then x = ___ C G</p><p>D H</p><p>(Problems #12 – 14) 14.) If EF = 5, FG = x + y, GH = 3y – 2x then x = ____ and y = ____. 3 Algebra Review: Simplifying, Multiplying, and Dividing Radicals 15.) 72 16.) 3 72 17.) -4 250</p><p>5 18.) 2 12 19.) 3 5 2 5 20.) 3</p><p>4 3 21.) 22.) 23.) (3 6 )2 5 8</p><p>Solving equations by factoring: Write the equation in descending order and set = 0 Factor completely Set each factor = 0 Solve for the variable. You should have the same number of solutions as the greatest exponent in the original equation</p><p>Solve each equation by factoring. List only Real solutions: </p><p>24.) 3x2 – 12 = 0 25.) 5x – 6 + x2 = 0 26.) 10x2 – 11x = -3</p><p>27.) 8x3 – 18x2 = -10x 28.) 6x3 – 2x = -x2 29.) x4 – 16 = 0 4 Notes #31: Parallelograms and Trapezoids (Sections 6.3 and 6.5)</p><p>You know that a quadrilateral IS A PARALLELOGRAM if and only if ONE or more of these conditions is met:</p><p>(I) Both pairs of opposite sides are (II) Both pairs of opposite angles parallel are congruent</p><p>(III) Both pairs of opposite sides are (IV) One pair of sides is both congruent congruent and parallel</p><p>(V) Diagonals bisect each other</p><p>Must ABCD be a parallelogram? If so, which of the above conditions was/were met?</p><p>1.) 2.) C 5 B B C</p><p>7 7</p><p>A 5 D A D</p><p>Yes or No? If yes, why? ______Yes or No? If yes, why? ______3.) 4.) B C B C 20 20</p><p>20 20 A D A D</p><p>Yes or No? If yes, why? ______Yes or No? If yes, why? ______5</p><p>5.) 6.) B C B C 60 120 60</p><p>A 60 A 60 D D</p><p>Yes or No? If yes, why? ______Yes or No? If yes, why? ______Find the values of a and b for which WXYZ must be a parallelogram</p><p>7.) WP = 3a, PY = b, XP = 2b – 7, PZ = b + 2 8.) WX = 3a – 3, YZ = a + 1, X Y m� X+ b �40, m Y b</p><p>X Y</p><p>P</p><p>W Z W Z</p><p>Trapezoids (Section 6.5)</p><p>A. Trapezoids: Trapezoids are quadrilaterals with ______pair of parallel sides (called ______) and one pair of non-parallel sides (called ______)</p><p>Question: Are trapezoids parallelograms?______Are trapezoids quadrilaterals?______</p><p>The median of a trapezoid: Connects the ______of the legs Is parallel to the ______ Is equal to the average lengths of the ______</p><p> base+ base median = 2 6 A trapezoid and its median are shown. Solve for x : (plug x back in to check!) 9.) 10.) 11.) 7</p><p>3x + 1 x 2x - 4 10 x - 3 5x - 2</p><p>19 4x + 1</p><p>Isosceles Trapezoids are trapezoids with ______.</p><p>The base angles of an isosceles The diagonals of an isosceles trapezoid are congruent trapezoid are congruent.</p><p>Complete the following problems: 12.) WXYZ is an isosceles trapezoid and 13.) ABCD is an isosceles trapezoid and m� W 70° . Find the measures of the m� B 102° . Find the measures of the remaining remaining three angles. three angles.</p><p>X Y B C</p><p>W Z A D</p><p>14.) If XZ = 2a + 7 and YW = 4a – 9, solve for a X Y</p><p>W Z</p><p>7 Algebra Practice: Solving equations by square rooting Get x2 alone Square root both sides of the equation. Use so that you have TWO solutions. Solve: 15.) x2 + 32 = 52 16.) (2x)2 + 82 = 102 17.) x2 + (5 3 )2 = 102</p><p>18.) x2 + x2 = 82 19.) x2 + (2x)2 = 152 20.) x2 + ( 4 6 )2 = (6 3 )2</p><p>Writing Equations of Lines: Find slope Formula OR Parallel Lines OR Perpendicular Lines</p><p> Solve for b by plugging m, x, y into y = mx + b Plug m and b back into y = mx + b Convert to standard form if necessary.</p><p>Find the equation of the line… 23.) that goes through the points (-5, 4) and 24.) that is parallel to: y = 5x – 11 and that passes (3, 0) in Standard Form. through the point (6, 3) in slope-intercept form. 8 Notes #32 : Special Quadrilaterals (Sections 6.1 and 6.4) Quadrilaterals</p><p>Trapezoids Parallelograms</p><p>Rectangle Rhombus Isosceles Trapezoid</p><p>Square</p><p>Quadrilaterals</p><p>Parallelograms</p><p>Rectangles Rhombi</p><p>Trapezoids</p><p>Squares 9</p><p>Name all quadrilaterals that fit the description: (P = parallelogram, T = trapezoid, Re = rectangle, Rh = rhombus, S = square)</p><p>1.) both pairs of opposite sides are congruent 2.) all sides are congruent</p><p>3.) diagonals bisect each other 4.) both pairs of adjacent sides are congruent</p><p>5.) diagonals are congruent 6.) all angles are congruent</p><p>7.) both pairs of opposite sides are parallel 8.) exactly one pair of sides is parallel</p><p>ABCD is a rhombus: B 3 4 9.) If m�1 40° , find the measures of the other angles.</p><p>A 2 C 1 5 10.) If m�5- 3 x 9 , solve for x</p><p>D</p><p>11.) If m�1+ 2 x � 1, m - 2 5 x 8 . Find x. 12.) If m�1- 7 x � 3, m + 3 2 x 12 , find x.</p><p>PQRS is a rectangle: Q R ° 4 13.) If m�1行 23 , find m 2, m 3, m 4 O</p><p>3 1 P 2 S</p><p>14.) If PO = 5x – 1 and QS = 38, solve for x. 15.) PQ is two inches shorter than QR. The perimeter of PQRS is 40 inches. Find the length of each side. 10 Algebra Review: Reducing fractions and fractions with radicals</p><p>-6 18 -5 20 16.) 17.) 2 2</p><p>4 20 -8 27 18.) 19.) 4 2</p><p>2 2 20.) -9� ( - 5) (4)(2)(3) 21.) -9� (6) - 4( - 3)( 3) 4 4</p><p>22.) Find the equation of the line with an 23.) Find the equation of the line perpendicular to x-intercept of -5 and a y-intercept of 4 in slope- the line: y = 5x – 1 and passing through the point intercept form. (-2, 3) in standard form. 11 Notes #33 : Quadrilaterals in the Coordinate Plane (Sections 6.6 and 6.7)</p><p>A. Graphing Special Quadrilaterals on the Coordinate Plane Graph points A, B, and C of the given special quadrilateral. Find the coordinates of D.</p><p>1.) Rectangle ABCD: 2.) Square ABCD: A (-5, 3) B(-5, 7) C(4, 7) D(___, ___) A (-4, 0) B(0, 4) C(4, 0) D(___, ___) y y 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 x x -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 -7 -7 -8 -8 -9 -9 -10 -10 3.) Isosceles trapezoid ABCD: 4.) Parallelogram ABCD: A (-6, -3) B(-4, 4) C(4, 4) D(___, ____) A (-7, -5) B(-4, 0) C(-1, 0) D(___, ____) y y 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 x x -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 -7 -7 -8 -8 -9 -9 -10 -10</p><p>Points on the same horizontal line have the same _____- coordinate</p><p>Points on the same vertical line have the same _____- coordinate</p><p>For #5-8, give the coordinates of points W and Z without using any new variables. 5.) rectangle 6.) parallelogram y</p><p>(b, c) W</p><p>O x x (0, 0) (a, 0) 12 7.) rhombus 8.) isosceles trapezoid y y</p><p>(0, b) (-b, c) W Z</p><p>W x x O (a, 0) (-m, 0) O (m, 0)</p><p>Z</p><p>B. Proofs in the Coordinate Plane When we place a quadrilateral in the coordinate plane, we have some flexibility in how we name the vertices. In general, though, it is a good idea to name vertices as expressions that are divisible by ______in case we need to use the midpoint formula.</p><p>Formulas that we need to know when working with the coordinate plane </p><p>Slope = </p><p>Distance = </p><p>Midpoint = </p><p>9.) Complete a plan to prove the following:</p><p>The segment connecting the midpoints of the legs y R (2b, 2c) of a trapezoid is parallel to the bases of the A (2d, 2c) trapezoid. M N Given: TRAP is a trapezoid, T M is the midpoint of RT P (2a, 0) x N is the midpoint of AP</p><p>Prove: MNP TP, MN P RA</p><p>Place the trapezoid in the coordinate plane with a vertex at the (a) ______and a side along the </p><p>(b) ______. Since midpoints will be involved, name coordinates using multiples of (c) ______. </p><p>To show that line are parallel, check for equal (d) ______by using the formula for (f) ______. 13</p><p>10.) Now use coordinate Geometry to complete the proof of #9 above. y R (2b, 2c) Given: TRAP is a trapezoid, A (2d, 2c) M is the midpoint of RT M N N is the midpoint of AP T x Prove: MNP TP, MN P RA P (2a, 0) a) Find the coordinates of M and N. How do the multiples of 2 help? </p><p>Reminder: midpoint = (______, ______)</p><p>M is the midpoint of RT : R(____, ____) T(____, ____)</p><p>N is the midpoint of _____: (____, ____) (____, ____)</p><p> b) Find and compare the slopes of MN, TP , and RA Reminder: slope = ______</p><p>MN : M(___, ___) N(___, ___) TP : T(___, ___) P(___, ___) RA : R(___, ___) A(___,___)</p><p> c) What can you conclude and why?</p><p>14 11.) Consider Quadrilateral WXYZ. Prove that the quadrilateral formed when connecting the midpoints of the sides of WXYZ is always a parallelogram. y a) Which formulas will we need to use here X (2d, 2e) and why? </p><p>Y (2b, 2c)</p><p>W (0, 0) b) Draw quadrilateral QRST that connects the x midpoints of the sides of WXYZ, respectively. Z (2a, 0) c.) Find the coordinates of Q, R, S, T d.) Prove that QRST is a parallelogram (show that the opposite sides of QRST are ______Q is the mdpt of WX : W(___, ___) X(___, ___) using the ______formula)</p><p>QR : Q(___, ___) R(___, ___)</p><p>R is the mdpt of ____: (___, ___) (___, ___)</p><p>RS : R(___, ___) S(___, ___) S is the mdpt of ____: (___, ___) (___, ___)</p><p>: (___, ___) (___, ___) T is the mdpt of ____: (___, ___) (___, ___) ST</p><p>TQ : (___, ___) (___, ___)</p><p>15 y 12.) Complete the plan for the coordinate proof: N (2a, 2b) M (0, 2b) W Given: MNOP is a rectangle T, W, V, U are midpoints of its sides T V</p><p> x U P (2a, 0) Prove: TWVU is a rhombus</p><p>Place the rectangle in the coordinate plane with a vertex at the (a) ______and a side along the (b) ______. Since midpoints will be involved, name coordinates using multiples of (c) ______. Since a rhombus is a parallelogram with (d) ______, show that (e) _____@ _____ @ _____ @ _____ using the (f) ______Formula.</p><p>13.) Now use coordinate Geometry to complete the proof for #12 above. y W N (2a, 2b) Given: MNOP is a rectangle M (0, 2b) T, W, V, U are midpoints of its sides T V</p><p> x Prove: TWVU is a rhombus U P (2a, 0) a) Find the coordinates of T, W, V, and U using the ______formula. T is the midpoint of _____ W is the midpoint of ______</p><p>V is the midpoint of ______U is the midpoint of ______</p><p> b) Find and compare TU, UV, VW, and WT using the ______formula.</p><p>TU: T(____, ____) U(____, ____) UV: U(____, ____) V(____, ____)</p><p>VW: V(____, ____) W(____, ____) WT: W(____, ____) T(____, ____) 16</p><p> c) What can you conclude and why?</p><p>17 Geometry Chapter 6 Study Guide Name: ______Per: ______</p><p>For #1, answer the question about parallelograms.</p><p>1.) Opposite sides of a parallelogram are both (a)______and (b)______. Opposite angles of a parallelogram are (c) ______and consecutive angles of a parallelogram are (d) ______. Diagonals of a parallelogram (e) ______. </p><p>For #2-5, PQRS is a parallelogram. Find the values of a, b, x, and y. 2. 3. 2. a =______R Q Q a R b =______80 y b y x =______a 10 b y =______</p><p>S 20 x 45 x P P S 3. a =______4 C 6 b =______x =______y =______</p><p>5. 4. 4. a =______R Q 2x + 3y R Q b =______a x 50 64 a b 7 x =______y =______y 5x + 4y 9 32 5 100 20 P S 5. a =______28 b =______b P 5 S x =______y =______</p><p>For #6, draw a picture, write an equation, and solve. 6. Quadrilateral ABCD is a parallelogram. The length of AB is five more than 6. AB=______three times the length of BC . The perimeter of ABCD is 58m. Find the length BC=______of each side. CD=______DA=______18</p><p>For #7 – 10, study each figure and decide whether ABCD must be a parallelogram. If the answer is yes, explain the rule you used. 7. If yes, why? 8. If yes, why?</p><p>C B B 12 C 62 80</p><p>8 8 80 62 D A D A 12</p><p>9. If yes, why? 10. If yes, why?</p><p>C B C B</p><p>4 6</p><p>6 4 A D A D</p><p>For #11 - 12, simplify the radical expressions: 11.) 12.) 11. 2 a) 6 98 a) (4 3) (a) ______(b) ______(c) ______骣 b) 3 12 5 15 2 3 ( )( ) b) 琪 12. 桫3 6 (a) ______</p><p>骣7 (b) ______c) 琪 2 桫 2 骣2 3 (c) ______c) 琪 桫4 2</p><p>13. AW, BX , CY and DZ are parallel. WX = XY = YZ a.) If AD = 27, CD = ______13. A W (a) ______b.) If AC = 5x – 8 and AB = x + 5, then B X x = ______(b) ______C Y (c) ______D Z c.) If BC = 7x and AD = 9x + 24, then x = ______19 Classify each as true or false: 14. ______14. Opposite sides of a rectangle must be parallel. 15. ______15. The diagonals of a rhombus must be perpendicular. 16. ______16. Same side interior angles of a parallelogram are complementary. 17. ______17. Diagonals of a rectangle bisect corner angles. 18. ______18. The diagonals of a square bisect each other. </p><p>Write the letter of every special quadrilateral that has the given property. A Parallelogram B Rectangle C Rhombus 19. ______D Square E Trapezoid 20. ______</p><p>19. All sides congruent. 20. Diagonals bisect corner angles. 21. ______</p><p>22. ______21. Opposite sides congruent. 22. Diagonals are congruent. 23. ______23. Diagonals are perpendicular. 24. Exactly one pair of parallel sides. 24. ______</p><p>GRIP is a rectangle. Complete: G R 25. If m�1 20 , then find m行2, m 3, and m 4 4 25. ______</p><p>26. If GI = 16, find RS and RP S 3 26. ______2 P 1 I</p><p>27. ______27. If PS = 6x – 4 and GI = 28, then x = _____</p><p>ABCD is a rhombus. Complete: B 28. If AB = 8, find BC, CD, and DA 3 4 28. ______C A 2 m 1 20 m行2, m 3, and m 4 29. If � , then find 1 29. ______</p><p>D 30. If m�1- 5 x � 3 and m + 3 3 x 5, solve for x. 30. ______20</p><p>Trapezoids and their medians are shown. Solve for x. 31. 32. </p><p>3x + 2 31. ______</p><p>2x + 1 11 5x 2x + 4</p><p>32. ______2x + 1</p><p>For #33-36, solve for x by factoring: 33. 12x2 = 20x 34. 6x2 – 6 = -16x 33. ______</p><p>34. ______</p><p>35. 8x2 – 9 + 6x = 0 36. 9x3 + 18x2 – 72x = 0 35. ______</p><p>36. ______</p><p>For #37-38, solve for x 2 2 38.) (2x)2 + 52 = 132 37. ______37.) x2 + (2 3) = (2 7 )</p><p>38. ______</p><p>For #39-40, simplify: -12 45 2 39. ______39.) 40.) -6� (8) - 4(3)( 3) 6 4</p><p>40. ______21 Graph points A, B, and C of the given special quadrilateral. Find the coordinates of D. 41.) Trapezoid ABCD: 42.) Parallelogram ABCD: A (-3, 1) B(-6, 4) C(6, 4) D(___, ___) A (2, 0) B(-8, 0) C(-4, 7) D(___, ___) y y 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 x x -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 -7 -7 -8 -8 -9 -9 -10 -10 Give coordinates for points D and S without using any new variables. 43.) parallelogram 44.) rhombus</p><p> y y D (c + a, b)</p><p>(0, d)</p><p>D x O S (c, 0) O x (c, 0) S</p><p>45.) Complete the plan for the coordinate proof y for the following theorem:</p><p>The diagonals of a parallelogram bisect each B (2b, 2c) C (2a + 2b, 2c) other.</p><p>E Given: ABCD is a parallelogram</p><p>A Prove: AC bisects BD , and BD bisects AC x D (2a, 0)</p><p>Place the parallelogram in the coordinate plane with a vertex at the (a) ______and a side along the (b) ______. Since midpoints will be involved, name coordinates using multiples of (c) ______. To show that the segments bisect each other, show that the midpoints have the same (d)______. 22</p><p>46.) Now use coordinate Geometry to complete the proof for #45 above.</p><p> y</p><p>Given: ABCD is a parallelogram B (2b, 2c) C (2a + 2b, 2c)</p><p>E</p><p>Prove: AC bisects BD , and BD bisects AC A x D (2a, 0) a) Find the coordinates of the midpoint of AC . How do the multiples of 2 help?</p><p> b) Find the coordinates of the midpoint of BD . How do the multiples of 2 help?</p><p> c) What can you conclude and why?</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages22 Page
-
File Size-