Calculus III Self Assessment B Exam 3 Chapter 14 Sanchez 97:3,4

Calculus III Self Assessment B Exam 3 Chapter 14 Sanchez 97:3,4

<p> Multivariable Calculus Self Assessment B - answers Name:______</p><p> 2 Z 1. If z=f(x, y) and xy + yz + z2= 0, find at (-2,1,1) X Y Solution: F z y x  z 1.      w  f (x, y, z) y F y  2z z 2 z   z  w f f y f z 2.          xy x  y  x x y x z x 1 (y  2z)(1)  (x  z)(2)  y     0  .  y  2z (y  2Z)2  y  2z  1 y  2x  y  1 y2  2xy    .     y  2z (y  2Z)2  y  2z  y  2z (y  2z)3  y2  4yz  4z 2  y2  2xy  4yz  2xy  4z 2   (y  2z)3 (y  2z)3  4  4  4 4    (1 2)3 27 another way:  z   z  2 y  2z1   x  z2   z   x  z   x   x       xy x  y  2z  y  2z2  y   2y  y  2z1   x  z   y  2z   y  2z  y  2zy  2z  y x  z2y         y  2z2 y  2z3 y  2z2z x  z2y 32 12 4       y  2z3 1 23 27 4 answer: ______ ______27</p><p>Self-Assessment page 1 Form B dy 2. Use the Jacobian to find at (1, -1, 1) if -2xy + 3z + x2= 6 and 2x - y2 + yz = 2 dx Solution: (F,G)  2y  2x 3 4 3 dy (x, z) 2 y 2 1 10 10 10           answer:  dx (F,G)  2x 3  2 3  7 7 7 (y, z)  2y  z y 3 1</p><p>3. Find the directional derivative of w= 2x2yz in the direction of v=3i-4j at he point (-1, 1, 3, 6) Solution : The gradient is given by : w  4xyzi  2x2 zj  2x2 yk  12i  6 j  2k   3 4 The unit vector in the direction of v is u  i  j  0k 5 5   36 24 60 Dw  w  u    0    12 answer : 12 v 5 5 5</p><p>4. Use the Lagrangean coefficients technique to find the minimum value of w  y  z  2x2 subject to the condition x  y2  z 2. We want to find the minimum value of w  y  z  2x2 for point located in the paraboloid x  y2  z 2. Solution: using Lagrangean coefficients. The lagrangean equation is given by F(x, y, z,)  y  z  2x2  (x  y2  z 2 )  F   4x    0  x    x 4  F 1  1 2y  0  y   y 2  F 1   1 2z  0  z   z 2  F 2 2  1 1 3 3   x  y  z  0      0    2     2   4 42 42 Therefore, 2 1 1   3 2  1 3 4  3 4 3 4 33 4 w  y  z  2x2    2        3 3   3 2 2 2 2  4  2 8 2 8 8 33 4 answer: ___  ______8</p><p>Self-Assessment page 2 Form B 5. Find all critical points of f(x, y) = y3 + xy2 -2xy . Determine whether each critical point yields a relative maximum value, a relative minimum, or a saddle point. Step 1. f  y2  2y  0 x y(y  2)  0 y  0 and x  0 or  f   2     3y2  2xy  2x  0 3y  2xy  2x  0  y  2 and 2x 12  0  x  6  y Critical Points: The critical points are (0, 0, 0) and (-6, 2, 8)</p><p>Step 2.  2 f   0  2   x  2 f at x  0 and y  0  0    4, saddle point 2   2  f   y   0 2 x2    f     2 2 f  yx  6y  2x    2  2  y   f 2   0   f  x2   2y  2   yx 2 f   at x  6 and y  2  2    4, saddle point   2  y  2    f    2   yx Answer: both (0, 0, 0) and (-6, 2, 8) are saddle points </p><p>6) An ice cone is melting in such a way that the radius is decreasing at the rate of 2 inches per minute and the height is decreasing at the rate of 3 inches per minute. At what rate is the volume changing when r=3 feet and h=5 feet.</p><p>. 1 V V dr V dh V 2 1 V   r 2h         rh 2   r 2 3 3 t r dt h dt t 3 3 V 2 1    (36)(60) 2   (36)2  3  2880 1296 t 3 3 V  4176 sq  inches per min  29 sq  ft per min  91.106 ft  min t</p><p> answer: ______ 91.106 ft  min ______</p><p>Self-Assessment page 3 Form B  2 z 7. If z = x2 +y2 , x=r+2s and y = 3r +s, find  r s Solution: z z x z y      2x  2  2y 1 4x  2y  w s x s y s 2 z  w x w y  (w)      41  2(3) 10 rs r x r y r answer: __ 10______</p><p> 2 z 8. If f(x, y) = x2 -xy + y2 find  x y Solution:  2 z   z        x  2y  1  x y x  y  x answer:____-1 ______</p><p>x y2 9. If x=f(y, z), 4 = x3 -y3 -z3 , find answer: : ______y x2</p><p>Solution: F x y  3y2 y2      y F 3x2 x2 x</p><p>10. Use differentials to approximate 3 6 . 3 3 7 . 6 Solution: Let f (x, y)   x3 y , x  36, x  0.3, y  8, y  0.4 f (36,8)   363 812 f f 3 y x f  df  x  y  x  y  x y 2 x 33 x2 2 6 6 24 18  3  0.3   0.4       0.15 12 12 120 120 120 20 Therefore, 36.33 7.6 12  0.15 11.85 answer :11.85</p><p>Self-Assessment page 4 Form B 11. Find the maximum value of w= x2 +3y2 +2z2 subject to the condition 2x-3y+5z=1. Solution: using Lagrangean coefficients. The lagrangean equation is given by F(x, y, z,)  x2  3y2  2z 2  (2x  3y  5z 1)  F 39 4  2x  2  0  x     1     x  4 39  F   4   6y  3  0  y   x   y 2  39    F 5 2   4z  5  0  z     y    z 4  39  F 3 25  5  2x  3y  5z 1  0  2     1  0 z    2 4  39 2 2 2 16 12 50 78 2 Therefore, w  x  3y  2z      answer 392 392 392 392 39</p><p>12. Find the point on the plane 2x-y +3z -5 =0 that is closest to the origin. Solution: We want to minimize d  x2  y2  z 2 or D  d 2  x2  y2  z 2 subject to the constraint that 2x - y + 3z -5 =0. The lagrangean equation is given by F(x, y, z,)  x2  y2  z 2  (2x  y  3z  5)  F  5  2x  2  0  x   14  10      x  7  F   5   2y    0  y   x   y 2  7    F 3 5   2z  3  0  z     y    z 2  14  F 1 9  15  2x  y  3z  5  0  2      5  0 z    2 2  14  5 5 15  Therefore, the closest point is  ,  ,   7 14 14 </p><p>Self-Assessment page 5 Form B 13. The gradient is normal to the level surface F(x, y, z) =0. It is because of this normality of the gradient that the maximum directional derivative ( which is ) at a point is often called the normal d f derivative at Normal Derivative at that point. We use the notation for the normal derivative of a d n function f.</p><p>Find the normal derivative of z = x3 y at the point (-1, 2, 2) and the corresponding unit vector. Solution: df z  3x2 yi  x3 j  6i  j   z  62  (1)2  37 dn  6 1 u  i  j 37 37</p><p> x 2 y 14. Show that l i m 4 2  0 along any line y=mx, for any m. What is x 0 x  y y  0 x 2 y x 2 y l i m 4 2 along y=x2 . Does l i m 4 2 exist?. Explain. x 0 x  y x 0 x  y y  0 y  0</p><p>Solution: x2 y mx3 mx 0 y  mx, m  0  lim  lim  lim   0 x0 x4  y2 x0 x4  m2 x2 x0 x2  m2 m2 y0 y0 y0 x2 y 0 m  0 y  0 and lim  lim  0 x0 x4  y2 x0 x4 y0 y0 x2 y x4 1 y  x2  lim  lim  x0 x4  y2 x0 x4  x4 2 y0 y0 Therefore the limit does not exist because it is not unique</p><p>Self-Assessment page 6 Form B</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us